
DISCRETE MATHEMATICS

lecture notes

Gašper Fijavž

Faculty of Computer and Information Science

Ljubljana, November 2014

CIP - Kataložni zapis o publikaciji
Narodna in univerzitetna knjižnica, Ljubljana

51(075.8)(0.034.2)

FIJAVŽ, Gašper
 Discrete mathematics [Elektronski vir] : lecture notes / Gašper Fijavž. - El. knjiga. -
Ljubljana : Fakulteta za računalništvo in informatiko, 2014

Način dostopa (URL): http://matematika.fri.uni-lj.si/discrete_mathematics.pdf

ISBN 978-961-6209-84-7 (pdf)

277297152

Contents

Uvod 4

Introduction 4

1 Graph Searching 5

2 Paths, flows, and connectivity 14

3 Constructing 2-connected graphs 25

4 Planar graphs 37

5 Discharging technique 46

6 List coloring of planar graphs 56

7 Chordal graphs 62

8 Tree decomposition 70

9 Tree decomposition lower bounds 79

10 Matchings 83

3 DM, lecture notes

Uvod

Predmet Diskretna matematika študenta popelje na področje zahtevneǰsih grafovskih
algoritmov, ki jih obravnavamo delno z matematičnega in delno z računalnǐskega
vidika.

Zdi se, da so algoritmični problemi na grafih ali zelo enostavni, takšne algoritme
srečamo pri tečaju iz algoritmov in podatkovnih struktur, ali pa NP-težki. Pri
diskretni matematiki bomo poskusili najti srednjo pot, večinoma se bomo držali v
bazenu polinomsko rešljivih problemov, ki presegajo osnovno algoritmično šolo.

Za uspešen študij takšnih problemov pa bo potrebno nekaj novih matematičnih
znanj.

Predmet Diskretna matematika izvajamo v angleškem jeziku, pričujoči zapiski pre-
davanj pa so dostopni tudi na spletnem naslovu

matematika.fri.uni-lj.si/discrete_mathematics.pdf

Introduction

The Discrete mathematics course tackles a selection of graph algorithms, which are
studied from both the mathematical and computational point of view.

We often have the impression that graph algorithmic problems are either very basic,
and as such taught in an introductory algorithms course, or NP-hard. This course
tries to steer in between. We shall mostly study problems that are computationally
easy—solvable in polynomial time, yet difficult enough to surpass the collection of
elementary algorithms.

We shall need quite a lot of discrete mathematical background to successfully deal
with these types of problems, and the details are provided herein.

These lecture notes are available at

matematika.fri.uni-lj.si/discrete_mathematics.pdf

4 DM, lecture notes

matematika.fri.uni-lj.si/discrete_mathematics.pdf
matematika.fri.uni-lj.si/discrete_mathematics.pdf

1 Graph Searching

1.1 Definitions

Let G be a graph. We say that vertex u is reachable from a vertex v, u v, if there
exists a path Puv (equivalently a walk) starting at u and ending at v. In case G is
a directed graph also the path Puv is supposed to be a directed one.

Reachability is trivially — using paths of length 0 — a reflexive relation on the set
V (G). If G is undirected, then reachability is also symmetric and transitive.

Let G temporarily denote an undirected graph. Reachability, being an equivalence
relation, partitions the set V (G) into equivalence sets V1, V2, V3, . . . , Vk, and the
induced graphs C1 = G[V1], C2 = G[V2], C3 = G[V3], . . . , Ck = G[Vk] are called
connected components of G. In case G has a single connected component we call G
a connected graph.

A component Ci of G is a maximal connected induced subgraph of G.

The story is somewhat different in the case of directed graphs. If
−→
G is a directed

graph it might happen that a vertex is reachable from another but not vice-versa,
u v and v 6 u, the relation not being symmetric. Yet the relation of mutual
reachability , u v and v u, is an equivalence relation, and similarly as above,

decomposes the graph
−→
G into strongly connected components (s.c. components)

−→
C 1,
−→
C 2, . . . ,

−→
C `. As above, a strongly connected component is a maximal strongly

connected component of
−→
G .

If
−→
G is a directed graph, then its underlying graph G is obtained by removing

orientations of edges of
−→
G , keeping the same vertex set, and suppressing possible

parallel edges obtained by deleting orientations of a pair of counter oriented edges.

Clearly, if
−→
G is strongly connected, then G is connected, but the reverse may not

hold. We call
−→
G weakly connected if its underlying counterpart G is connected. Note

that weak connectivity of
−→
G does not imply that for arbitrary vertices u, v ∈ V (

−→
G)

at least one is reachable from the other.

In order to keep our results tidier we shall also say that a connected undirected
graph G is strongly connected as well.

Let us now define distance between vertices in G: the distance from x to y, dist(x, y),

is the length of a shortest x→ y-path in
−→
G . Note that in a directed graph

−→
G

the distances dist(x, y) and dist(y, x) may be different, yet in an undirected graph
distance is symmetric.

We call
−→
G a directed acyclic graph or dag (for short) if

−→
G has no directed cycles

— a pair of counter oriented edges is considered a cycle of length 2. Observe that

its underlying graph G may contain cycles. A topological ordering of vertices of
−→
G

is a linear ordering v1, v2, v3, . . . , vn (numbering of vertices), so that if vivj ∈ E(
−→
G)

then i < j. In other words, with respect to the topological ordering, every edge is
pointing to the right.

5 DM, lecture notes

If
−→
G is not a dag then its vertices cannot be topologically ordered. Irrespective

of the numbering of vertices, traversing a directed cycle necessarily makes at least

one step to the left. Does the reverse implication also hold? If
−→
G is a dag, do its

vertices admit a topological ordering? The easiest argument is inductive: if
−→
G is

a dag, then there exists a vertex v satisfying outdeg(v) = 0 (otherwise every walk

can be extended by an additional step,
−→
G admits walks with repeated vertices, and

the shortest walk with repeated vertices is a directed cycle). Now v can be put as

the last vertex in the topological ordering, and vertices of
−→
G − v can be ordered

recursively.

1.2 Graph searching, general schema

We can picture graph searching like a disease infecting vertices which is spreading
along (directed) edges. Initially, vertices are healthy, and in the beginning a vertex,
often called the root , gets infected. The process stabilizes when no new infections
are possible, and it might happen that not all vertices are infected. In this case we
may restart by infecting another vertex.

We shall rather use colors for indicating whether a vertex has been visited with a
search algorithm. A vertex is white if it has not been discovered with a searching
procedure, and infection turns the vertex black (like plague or black death, right).
Upon discovery a vertex is put in a data structure D. Initially all vertices are colored
white, D is empty, and an auxiliary structure search forest T is trivial.

GraphSearch(G)
1 while exists a white vertex v do
2 GraphSearch((G, v))

GraphSearch(G, v)
1 add s to D and color it black;
2 while D 6= ∅ do
3 remove a vertex v from D;
4 foreach u ∈ N(v) do
5 if u is white then
6 add u to D and color it black;
7 T = T + uv

Algorithm 1.1: GraphSearch(G, s) and its wrapper GraphSearch(G), top.

The edges of T store the information of the disease spread. If a vertex u has acquired
the disease from vertex v, then the (directed) edge vu is put in the search forest T .

Note that every call of GraphSearch(G, s) produces a single component of the
search forest. In case we call the searching procedure GraphSearch(G, s) without
a prior call of the wrapper GraphSearch(G) we name T the search tree. The
search tree T is rooted at s with edges oriented away from the root s.

6 DM, lecture notes

A search forest T partitions the edges of G into four classes. An edge uv ∈ E(G) is

• a tree edge if uv ∈ E(T),

• a forward edge if v is a descendant of u in T ,

• a backward edge if v is an ancestor of u in T , and

• a cross edge in all the remaining cases.

Proposition 1.1 If G is strongly connected, then the search forest T has a single
component (i.e. is indeed a tree).

Proof. Assume to the contrary that at the end not every vertex is black. Let x and
y be a black and a white vertex, respectively, so that the shortest directed x→y-path
is as short as possible. An interior vertex of any color is in contradiction with the
minimal length of the path, hence xy ∈ E(G). As x is black at some point x is added
to D. Now observe line 3 of Algorithm 1.1 when vertex x is removed from D. The
next line adds all white neighbors of x, including y, to D, which is a contradiction
to the color of y. �

Corollary 1.2 Let T be a search forest of G. If G is undirected, then T has the
same number of components as G. If G is a directed graph, then the number of
components of T is at most the number of strongly connected components of G.

Proof. The second statement is an immediate consequence of Proposition 1.1. The
first one follows as there are no edges between components in an undirected graph.

�

Let us compute the time complexity of the GraphSearch(G) algorithm. Let us
assume that G is a directed graph. We shall implicitly assume that data struc-
ture operations take constant amount of time. Preprocessing is done in O(n) time;
namely we assign every vertex a color. We proceed by amortized analysis. Every
vertex enters and leaves D at most once. Upon v leaving D, we check all edges
whose tail equals v, on line 3. In total, each edge is checked at most once whether or
not its head u is colored white. Summing vertex outdegrees over all vertices equals
the number of edges in G. Hence the total time complexity is O(n+m).

Theorem 1.3 Graph searching takes O(n+m) time.

1.3 Breadth first search

Breadth first search is a variant of graph searching where the goal is to spread out the
search as evenly as possible using a queue Q, a first-in-first-out Fifo data structure.

7 DM, lecture notes

BFS(G)
1 while exists a white vertex v do
2 BFS (G, v)

BFS(G, s)
1 EnQueue (s,Q);
2 while Q 6= ∅ do
3 v=DeQueue (Q);
4 foreach u ∈ N(v) do
5 if u is white then
6 EnQueue (u,Q) and color u black;
7 add edge vu to search forest T

Algorithm 1.2: BFS(G, s) and its wrapper BFS(G), top.

Breadth first search is typically the preferred choice for computing connected com-
ponents of an undirected graph.

Let us begin by observing that at every time of the run of BFS(G, s), the vertices
in Q are ordered by their distances from s, and even more:

Proposition 1.4 Let x1, x2, x3, . . . , xk is the sequence of vertices in Q at an arbi-
trary instant of the run of BFS(G, s). Then

(a) dist(s, x1) ≤ dist(s, x2) ≤ dist(s, x3) ≤ . . . ≤ dist(s, xk), and

(b) dist(s, xk) ≤ dist(s, x1) + 1.

Proof. We omit this proof �

We can nonetheless exploit the spread of searching in BFS(G, s) to compute dis-
tances from a fixed vertex s to the other vertices in G. Next, an s→x path in T is
also a shortest s→x path in G. Let x be an ancestor of y in T . Then let distT (x, y)
denote the length of the x→y-path in T . Obviously distT (x, y) ≥ dist(x, y). A little
less obvious is the converse:

Proposition 1.5 Let x be an ancestor of y in T . Then distT (x, y) = dist(x, y).

Proof. It is enough to prove the result for the case x = s is the root of T . Let
s = x0, x1, x2, . . . , xk−1, xk = y be the sequence of vertices along the shortest
and only s→y-path in T , so that k = distT (s, y) > dist(s, y). This implies that
dist(s, y) = dist(s, xk−1) = k − 1. Let y′ be a vertex adjacent to y on some shortest
s→y-path, in particular y′ 6= xk−1. By Proposition 1.4 y′ has entered Q before xk−1.
As y′y is not a tree edge, y was already colored black by the time y′ has left Q.
This is impossible, as xk−1, the predecessor of y, did not leave Q before y′, again by

8 DM, lecture notes

Proposition 1.4. �

Now Proposition 1.5 has an immediate consequence.

Theorem 1.6 If T is a BFS-tree of G with root s, then T contains shortest path
from s to every vertex v of G which is reachable from s, and both distances from s
and instances of shortest s→v paths.

Proof. Distances from s can be computed by a simple modification of BFS(G, s).
Let us first set d(v) = ∞ for every v ∈ V (G) \ {s}, and set d(s) = 0, and run
BFS(G, s) with an additional line

8 d(u) = d(v) + 1

�

1.4 Depth first search

Depth first search DFS can be implemented in an analogous way as BFS, using a
stack instead of a queue. Initially stack S is empty, all vertices are colored white.
The only technical issue — or difference compared to BFS — is that we color vertices
black immediately after they get popped from S.

DFS(G)
1 while exists a white vertex v do
2 DFS (G, v)

DFS(G, s)
1 Push (s, S);
2 while S 6= ∅ do
3 v=Pop (S);
4 if v is white then
5 color v black;
6 foreach u ∈ N(v) do
7 if u is white then
8 Push (u, S);
9 T = T + uv

Algorithm 1.3: DFS(G, s) and its wrapper DFS(G), top.

It is however most convenient to implement DFS recursively, again starting with all
vertices colored white and a trivial search forest T .

Instead of using a stack as a data structure for storing vertices, the process uses
the execution stack (call stack) storing active calls of DFSr. Let us enumerate call

9 DM, lecture notes

DFSr(G)
1 while exists a white vertex v do
2 DFSr(G, v)

DFSr(G, s)
1 color u black;
2 foreach u ∈ N(v) do
3 if u is white then
4 T = T + uv;
5 DFSr(G, v)

Algorithm 1.4: DFSr, a recursive version of depth first search.

stack operations pushing and popping calls of DFSr with consecutive integers ≥ 1.
The starting and finishing time of a vertex v, start(v) and finish(v), respectively, are
defined as indices of call stack operations marking the call of DFSr(G, v) and the
end of its execution. The active time of a vertex v is the interval between starting
and finishing times, time(v) = [start(v),finish(v)].

The call stack is, as its name suggests, a last-in-first-out Lifo structure, hence.

Proposition 1.7 Let x, y be vertices, and time(x) and time(y) their respective ac-
tive times. Then either time(x) ∩ time(y) = ∅ or time(x) and time(y) are nested
(one is a strict subset of the other).

Nested active times of vertices can be further characterized.

Theorem 1.8 Let T be a search forest/tree produced by depth first search. The
following statements are equivalent for every pair of vertices x, y:

(P1) time(y) ⊂ time(x).

(P2) y is a descendant of x in T .

(P3) At the time start(x) there exists a directed x→y path whose vertices are all
white.

Proof. Let us at this point stress that the stack in the next arguments is not the
stack storing vertices from DFS but the call stack storing recursive calls of DFSr:
a vertex v is in stack if the procedure DFSr(G, v) was recursively called and has
not yet terminated.

(P1 ⇒ P2 & P3) Observe the call stack at time start(y); vertex y has just been
pushed to the top of the call stack. As time(x) ⊂ time(y), vertex x is in the call
stack and at time start(y) we can denote the sequence of vertices near the top of
the call stack with x = x0, x1, x2, . . . , xk−1, xk = y. As for every i ∈ {0, . . . , k − 1}
the edge xixi+1 is a tree edge, y is a descendant of x. Further, at time start(x) the
very same sequence is a white path.

10 DM, lecture notes

(P2 ⇒ P1) The call of DFSr(G, x) is not yet finished at the start of the call
DFSr(G, y). Hence the inclusion of active times.

(P3 ⇒ P2) Assume that there exists a pair of vertices x, y, a path Px,y defined
by x = x0, x1, x2, . . . , xk−1, xk = y which is white at start(x), and let us also as-
sume that y is not a descendant of x in T . We may assume that the pair x, y is
chosen so that Px,y is as short as possible. This implies that vertices x1, . . . , xk−1
are all descendants of x, which in turn implies time(xk−1) ⊆ time(x) (by (P1)
applied to x and xk−1 taking into account that k might be 1). As being a descen-
dant is a transitive relation we may assume that y is not a descendant of xk−1.
Hence time(xk) ∩ time(y) = ∅. Now start(y) > finish(xk−1) contradicts the defini-
tion of BFSr, and finish(y) < start(xk−1)(< finish(xk−1) < finish(x)) implies that
time(y) 6⊂ time(x) as y is not a descendant of x nor finish(y) < start(x) as y is white
at time start(x). This is a contradiction. �

1.5 Applications of DFS: topological sort and strongly connected
components

In this section we will show how to use DFS to topologically sort vertices of a dag
and how to compute strongly connected components of a directed graph using two
runs of DFS.

Proposition 1.9
−→
G admits a topological ordering if and only if

−→
G is a directed

acyclic graph.

�

Let us start with a DFS-based computation of a topological ordering. Let L be
a list, which is initially empty. TopologicalSort can be defined with a single
(albeit not simple) line of pseudocode.

TopologicalSort(
−→
G)

1 run DFSr(
−→
G) and at the finish of each DFSr(

−→
G, v) prepend vertex v to L

Algorithm 1.5: TopologicalSort

Observe that at the end of the run the list L contains vertices of G sorted according
to descending finishing time. The following proposition establishes correctness of
Algorithm 1.5

Proposition 1.10 Let
−→
G be a dag, and let DFSr compute the finishing times of

its vertices. If xy ∈ E(
−→
G) then finish(x) > finish(y).

Proof. If xy ∈ E(
−→
G) then y 6 x, as

−→
G is a dag. Hence, at no time there exists a

white y→x-path, and by Theorem 1.8 x is not a descendant of y, or equivalently

11 DM, lecture notes

time(x) 6⊂ time(y). Now start(y) > finish(x) contradicts the run of DFSr, hence
on one hand start(y) < finish(x). Together with time(x) 6⊂ time(y) this implies
finish(y) < finish(x). �

Let
−→
G be a directed graph. A component graph of

−→
G , also called condensation of−→

G , is a directed graph
−→
Gcond defined in the following way: vertices of

−→
Gcond are

strongly connected components C1, C2, . . . , C` of
−→
G , and CiCj ∈ E(

−→
Gcond) if there

exists an edge xixj ∈ E(
−→
G), so that xi ∈ V (Ci) and xj ∈ V (Cj).

Let
−→
G be a directed graph. Its reverse graph

←−
G is obtained by reversing orientations

of all edges of
−→
G . Observe that strongly connected components of both

−→
G and

←−
G

are the same. Namely, if a pair of vertices x, y are mutually reachable, then they
are also mutually reachable if we reverse all edge orientations.

We can compute strongly connected components in two consecutive runs of depth
first search. Let L be a list, which is initially empty.

StronglyConnectedComponents(
−→
G)

1 run DFSr(
−→
G) and at the finish of each DFSr(

−→
G, v) prepend vertex v to L

reverse edges to compute
←−
G ;

2 run DFSr(
←−
G) in the order as the vertices appear in L and compute the

search forest T ;

3 vertex-sets of components of T induce strongly connected components of
−→
G

Algorithm 1.6: StronglyConnecteComponents

Before proving correctness of the above algorithm we need to establish some technical
results.

Proposition 1.11 Let C1 and C2 be distinct strongly connected components of
−→
G .

If there exists an edge x1x2 ∈ E(
−→
G), then no vertex of C1 is reachable from a vertex

of C2.

Proof. Assume that y2 y1 for some y1 ∈ V (C1) and y2 ∈ V (C2). As x2 y2 and
y1 x1, vertices x1 and x2 are mutually reachable. This contradicts the fact that
they lie in different strongly connected component. �

An immediate consequence of Proposition 1.11 is the next corrolary which we state
without its proof.

Corollary 1.12 Every component graph
−→
Gcond is a dag.

Let us first extend starting and finishing times to subgraphs of
−→
G . If

−→
H ⊆

−→
G , then

its starting time start(
−→
H) is defined as start(

−→
H) = min{start(v) | v ∈ V (

−→
H)}.

12 DM, lecture notes

Similarly we define its finishing time finish(
−→
H) as finish(

−→
H) = max{finish(v) | v ∈

V (
−→
H)}.

We shall first compare finishing times of adjacent strongly connected components.

Proposition 1.13 Let C1 and C2 be distinct strongly connected components of
−→
G .

If there exists an edge x1x2 ∈ E(
−→
G) with x1 ∈ V (C1) and x2 ∈ V (C2), then

finish(C2) < finish(C1).

Proof. Let x ∈ V (C1)∪V (C2) be the vertex satisfying start(x) = min{start(C1), start(C2)}.
If x ∈ V (C1) then for every vertex y ∈ V (C2) there exists a directed x→y-path whose
vertices are at time start(x) all white. Hence every vertex of C2 is a descendant of
x, and finish(C2) < finish(y) ≤ finish(C1).

Next assume that x ∈ V (C2). As above, for every vertex y ∈ V (C2) there exists a
directed x→y-path whose vertices are at time start(x) all white. Hence, by nesting
of active times we have finish(C2) = finish(x). Let x1 be an arbitrary vertex of C1.
By the choice of x we have start(x) < start(x1), and since x1 is not a descendant of
x (by Theorem 1.8 and Proposition 1.11, as x 6 x1) we have finish(x) < finish(x1),
and the proof is finished. �

We are now in the position to prove correctness of Algorithm 1.6.

Theorem 1.14 StronglyConnectedComponents(
−→
G) correctly computes strongly

connected components of
−→
G .

Proof. Let C1, C2, C3, . . . , C` be the strongly connected components sorted by de-
creasing finishing time implicitly computed on line 1 of Algorithm 1.6. Proposi-

tion 1.13 states that they are indeed topologically ordered. As the routine DFSr(
−→
G, x)

cannot visit a proper nonempty subset of vertices of some strongly connected com-
ponent we shall inductively assume that the call StronglyConnectedCompo-

nents(
−→
G) has at some point correctly identified strongly connected components

C1, . . . , Ck−1, and did not visit vertices outside these components. The induction
basis is trivial.

As an inductive step we only need to see that the search tree Tk produced by the

call DFSr(
←−
G, vk) (where vk is an arbitrary vertex of Ck) satisfies V (Tk) = V (Ck).

Clearly V (Ck) ⊆ V (Tk), as all vertices of Ck are reachable from vk and are also

white at time start(vk). Let xy ∈
←−
G so that x ∈ V (Ck) and y ∈ V (Cj) for some

j 6= k. By Proposition 1.13 we have finish(Ck) < finish(Cj) or equivalently j < k.
This implies that y is black. Hence at time start(vk) every white path starting at
vk ends in a vertex of Ck. Theorem 1.8 implies that V (Tk) ⊆ V (Ck), which finishes
the proof. �

13 DM, lecture notes

2 Paths, flows, and connectivity

Imagine that we want to transfer information originating in a vertex u to a distant
vertex v. As information can only be passed along edges, a single u→ u′-path
suffices for the task. On the other hand there might be an attacker trying to stop
the information transfer by either deleting edges or deleting vertices. If we can
find several independent ways to transfer information then an attacker possible of
compromising only a few structures in our graph cannot stop the information flow.

We will try to look at the problem from both parties’ ways. On one hand we want
to find as many independent u→u′-paths in G, on the other we shall look for a
structure as small as possible, whose removal inhibits the spread of information.

2.1 Menger theorems

Let G be a (directed) graph, and let u and u′ be different vertices of G. We say
that u→u′ paths P1 and P2 are edge disjoint if E(P1) ∩ E(P2) = ∅, and P1 and P2

are internally disjoint if V (P1)∩V (P2) = {u, u′}. In other words, internally disjoint
u→v-paths do not share vertices nor edges, apart from their endvertices.

Assume that we want to find a collection P of edge-disjoint u→u′-paths whose
cardinality is as large as possible. Is there an easy upper bound on |P|? Clearly
|P| ≤ outdeg(u) and also |P| ≤ indeg(u′). More generally, let us partition vertices
of G into two parts, one containing u and the other containing u′. The number of
edges from the first part to the second is also an upper bound for the number of
paths in P.

To be precise given vertices u and u′, an u, u′-cut is an edge set E(U,U ′) = {xy ∈
E(G) | x ∈ U and y ∈ U ′}, for which U,U ′ is a partition of V (G) (U ∪U ′ = V (G),
U ∩ U ′ = ∅) so that u ∈ U and u′ ∈ U ′.

Theorem 2.1 (Menger, 1.0) Let G be a (directed) graph, u and u′ distinct ver-
tices. The maximal number of edge disjoint u→u′-paths is equal to the size of the
smallest u, u′-cut.

We shall postpone the proof of Theorem 2.1 until later. But let us at this point
stress the duality aspect: for every collection of edge-disjoint u→u′-paths P and
every u, u′-cut C we have |P| ≤ |C|. Now an equality implies optimality of both, not
only that P is as large as possible, but also that C is as small as possible.

But the story goes on. Let G be an undirected graph and assume that S ⊆ V (G−
u − u′) is a set of vertices so that vertices u and u′ lie in different components of
G− S. This implies that every u− u′-path of G uses a vertex of S. We call such a
vertex set S a u, v-separator . As two internally disjoint u − u′-paths cannot share
a vertex from S, |S| is clearly an upper bound on the number of internally disjoint
u− u′-paths. Menger has proven yet another version of the theorem (and its proof
we shall again postpone until later):

14 DM, lecture notes

Theorem 2.2 (Menger, 2.0) Let G be an undirected graph and u and u′ distinct
nonadjacent vertices. The maximal number of internally disjoint u−u′-paths is equal
to the order of the smallest u, u′-separator.

As above, the importance lies in the duality. Clearly the number of internally
disjoint u − u′-paths cannot exceed the size of any u, u′-separator. The essence of
Theorem 2.2 lies in the equality in the extremal cases.

Is nonadjacency really necessary? Well, if u and u′ were adjacent, they cannot be
separated by deleting vertices only.

But what if one would like to have truly disjoint paths? Let A, B be vertex sets and
let us look for collections of disjoint A−B-paths in an undirected graph G. Clearly
both |A| and |B| are upper bounds on the cardinality of such a collection.

Note that in case A and B are not disjoint, the singleton paths from A ∩ B form
a collection of A − B-paths, and for the rest we can look for A \ B − B \ A-paths
between disjoint vertex sets in G− (A ∩B).

Menger has an appropriate result in this case as well, and we apologize once more
for postponing the proof.

Theorem 2.3 (Menger, 3.0) Let A,B be vertex sets of an undirected graph G.
The maximal number of disjoint A−B-paths is equal to the order of smallest vertex
set S, so that G− S contains no A−B-paths.

Note that in Theorem 2.3 we allow S to contain vertices from A ∪B.

2.2 Flows

The above Menger theorems (there are more to come), though dealing with different
types of graph structure, appear to be similar enough so a common approach should
take care of all their proofs. This is indeed the case, but we will have to make a
detour into the class of weighted graphs.

Again let us use the transfer of information example. Two links between nodes in
a network may have different bandwidths. Two pipes in a water supply network
may have different diameters. The amount of information or water flowing on a
connection may differ from one place to another, but in principle can be anything
between zero and the connection’s capacity.

Hence, weighted graphs. A weighted graph Gw , is a directed graph together with a
mapping

w : E(
−→
G)→ R+.

The weight of a directed edge uv is its w-value w(uv).

We say that weights are symmetric if w(uv) = w(vu) for every directed edge. In this
case we shall talk about weighted undirected graphs. Similarly, an unweighted graph

15 DM, lecture notes

(directed or undirected) may be modeled with 0/1 weights. We shall call weights of
edges also capacities, and regard an edge uv with w(uv) = 0 as a nonedge in Gw.

Let Gw be a weighted graph and s, t vertices, called source and sink respectively.
An s-t-flow f is a mapping

f : E(Gw)→ R+

satisfying

(F1) 0 ≤ f(uv) ≤ w(uv) and

(F2)
∑

x∈N(v) f(vx)−
∑

v∈N(y) f(yv) = 0 for every vertex v 6= s, t.

Condition (F1) states that edge-flow is nonnegative and bounded from above by
edge-weight, and conditions (F2) are also called Kirchhoff’s laws, the inflow at
every vertex v (other than the source and the sink) is equal to the outflow.

The value of the flow f , |f |, is defined as the outflow at the source: |f | =
∑

x∈N(s) f(sx),
with an additional assumption that the inflow at s is equal to 0.

Clearly the zero flow satisfies both (F1) and (F2) but we will be looking for the other
extreme, maximizing the value |f |. We will implicitly assume f(uv) · f(vu) = 0 for
every pair of counter oriented edges uv and vu. If δ = min{f(uv), f(vu)} > 0, then
decreasing the flow f on both uv and vu by δ does not change its value and the
resulting flow still satisfies both (F1) and (F2).

The dual concept of a flow is a cut . Let Gw be a weighted graph and s, t vertices.
An s, t-cut is an edge set E(U,U ′) for some partition of vertices {U,U ′} of V (G) so
that s ∈ U , t ∈ U ′.
The capacity of a cut E(U,U ′) is the sum of capacities of edges in E(U,U ′).

w(E(U,U ′)) =
∑

uv∈E(U,U ′)

w(uv)

The capacity of a cut limits the amount of flow going from U to U ′:

Proposition 2.4 Let E(U,U ′) be an s, t-cut and let f be an s− t-flow. Then

|f | ≤ w(E(U,U ′))

Our alternative goal is to minimize w(E(U,U ′)), as by Proposition 2.4 the capacity
of a cut is an upper bound for the value of a flow, and the smaller capacity the
better the upper bound.

Let E(U,U ′) be an s, t-cut. The flow across E(U,U ′) is defined as

f(E(U,U ′)) =
∑

uv∈E(U,U ′)

f(uv)−
∑

vu∈E(U ′,U)

f(vu)

16 DM, lecture notes

Proposition 2.5 Let Gw be a weighted graph, and f an arbitrary s− t-flow. Then
every s, t-cut E(U,U ′) satisfies

f(E(U,U ′)) = |f |.

Proof. Let us compute

∑
v∈U

 ∑
x∈N(v)

f(vx)−
∑

v∈N(y)

f(yv)

 (2.1)

On one hand the above sum (2.1) equals∑
uv∈E(U,U ′)

f(uv)−
∑

vu∈E(U ′,U)

f(vu) = f(E(U,U ′))

as the contribution of an edge xy whose both endvertices x and y lie in U cancels
out, xy carries inflow to y and outflow from x. On the other hand (2.1) is equal to∑

x∈N(s)

f(sx)−
∑

s∈N(y)

f(ys) = |f | − 0 = |f |,

as Kirchhoff laws apply at every vertex v ∈ U \ {s}. �

We are now ready to state the main result.

Theorem 2.6 (Ford-Fulkerson) Let Gw be a weighted graph, s, t vertices. Then

max |f | = minw(E(U,U ′)),

where the max ranges over all s− t-flows an min ranges over all s, t-cuts.

Rather than giving a mathematical proof we shall describe an algorithm whose
output will be both a flow f∗ and a cut E(U∗, U∗′), so that |f∗| = w(E(U∗, U∗′))
implying that both f∗ and E(U∗, U∗′) are optimal.

Given an s − t-flow f in a weighted graph Gw let us define the residual graph
Res(G, f), describing the amount of unused capacities of edges. Res(G, f) is a

(R0) weighted graph on the same vertex set as Gw with weights wRes,

(R1) if f(uv) > 0 then wRes(uv) = w(uv)− f(uv) and
wRes(vu) = w(vu) + f(uv),

(R2) if f(uv) = 0 and f(vu) = 0 then wRes(uv) = w(uv).

Residual graph indicates by how much and in which direction we may alter the flow.
If wRes(uv) = 0 we shall implicitly assume that uv 6∈ E(Res(G, f)).

17 DM, lecture notes

Now Res(G, f) can be computed using Gw and f , but also vice versa. The flow f
can be determined from Gw and Res(G, f):

f(uv) = max{w(uv)− wRes(uv), 0}

The Ford-Fulkerson algorithm 2.1 tries to push additional flow along a directed
s→t-path in the residual graph Res(G, f) starting with the zero flow. If Res(G)
contains no directed s→t-path, then the set of vertices which are reachable from s
in Res(G, f) and its relative complement determine the minimal cut.

FordFulkerson(Gw, s, t)
1 Res(G, f) = Gw;
2 maximal := False;
3 repeat
4 T ← BFS(Res(G, f), s);
5 if t ∈ V (T) then
6 UpdateFlow(Res(G, f), T, s, t)
7 else
8 maximal := True

9 until maximal = True;
10 return max{Gw − Res(G, f), 0}, E(V (T), V (Gw − T))

UpdateFlow(Res(G, f), T, s, t)
1 let P be the s→t-path in T ;
2 δ = min{wRes(uv) | uv ∈ E(P)};
3 foreach uv ∈ E(P) do
4 wRes(uv) = wRes(uv)− δ;
5 wRes(vu) = wRes(vu) + δ;

Algorithm 2.1: Ford-Fulkerson algorithm for computing maximal flow and min-
imal cut, and a subroutine.

Theorem 2.7 Upon finishing FordFulkerson returns a maximal flow and a min-
imum cut.

Proof. Let V (T) denote the vertex set the algorithm FordFulkeson outputs at
line 10. V (T) is exactly the set of all vertices reachable from s in the final residual
graph Res(G, f). Hence Res(G, f) contains no edge from V (Res(G, f)−T) to V (T),
or more formally, if v ∈ V (Res(G, f) − T) and u ∈ V (T), then wRes(uv) = 0. This
implies that f(uv) = w(uv), and consequently

w(E(V (T), V (Res(G, f)− T))) =
∑

uv∈E(V (T),V (Res(G)−T))

w(uv)

=
∑

uv∈E(V (T),V (Res(G,f)−T))

f(uv) = |f |,

by observing that a flow across an arbitrary cut is equal to |f |, see Proposition 2.5
�

18 DM, lecture notes

Theorem 2.8 (flow integrality) Let Gw be an integral weighted graph. Then
FordFulkerson computes an integral maximal flow.

Proof. This follows immediately by observing that integral weights of Res(G) at the
start of the algorithm imply that these weights remain integral, as in each run δ
computed on line 2 of UpdatePath is an integer. �

Theorem 2.9 Let Gw be an integral weighted graph and let k = max{|f |} be the
optimal flow value. Then FordFulkerson runs in

O(k(n+m))

time.

Proof. The return loop on line 3 is repeated at most k times, as each run increases
|f | by at least 1. As computing the search tree T as well as the call of UpdatePath
takes O(n+m) time, the total time used is O(k(n+m)). �

2.3 Back to Menger theorems and connectivity

Let us now take care of the proofs of Theorems 2.1, 2.2, and 2.3 by using flow results
on carefully constructed graphs.

Proof.[of Theorem 2.1] We compute the maximal set of edge-disjoint u→v-paths

in a directed graph
−→
G by solving the u − v-flow problem in

−→
G , where we consider−→

G as a weighted graph with 0/1 weights. A maximal flow f is by Theorem 2.8
integral and can be, as nontrivial eights are equal to 1, interpreted as an edge set

F = {e ∈ E(
−→
G) | f(e) = 1}.

The edge disjoint paths can be constructed inductively using only edges of F : each
additional path P deletes E(P) from F . �

Proof.[of Theorem 2.2] Let
−→
G be a directed graph, u and v nonadjacent vertices.

Let G′ be the graph obtained by the following procedure:

1. delete all incoming edges to u and rename u to uout,

2. delete all outgoing edges from v and rename v to vin,

3. replace each vertex x 6= u, v with a pair of vertices xin, xout,

4. add an edge xinxout of weight 1 between each pair of vertices xin, xout,

19 DM, lecture notes

5. replace each original edge xy with an edge xoutyin and set its weight to 2

Let f ′ be a maximal uout− vin flow in G′. By 2.8 we may assume that f ′ is integral.
As each vertex x 6= uout, vin has either only one outgoing or only one ingoing edge
whose weight is equal to 1, the flow f ′ on a single edge cannot exceed 1. As in the
above proof f ′ can be interpreted as a subset of edges of G′, and edge disjoint paths
P ′1, P

′
2, . . . , P

′
k can be found inductively.

These paths can be lifted to u→v-paths P1, P2, . . . , Pk in G, and are by construction
edge-disjoint. If Pi and Pj share a common internal vertex x, then P ′i and P ′j both
use the xinxout edge, which is impossible.

In fact the minimum uout, vin-cut in G′ contains only edges of the form xinxout, and
this cut lifts to a u, v-separator in G. �

Proof.[of Theorem 2.3] Let G++ be a graph obtained from G by adding a pair of
new vertices a and b, so that a is adjacent to every vertex of A, and every vertex of
B is adjacent to b. The internally disjoint a− b-paths in G++ correspond to disjoint
A−B-paths in G. �

Let G be, for the rest of this section, an undirected graph. Let us for technical
reasons also assume that G is connected. Without a reference to a pair of fixed
vertices we can define edge- and vertex-connectivity of a graph.

A cut in G is a subset of edges F so that G − F is disconnected (in case G is
disconnected a cut is a set of edges whose removal increases the number of connected
components, but at this point we do not want to enter such technical details). A
cut F in G is minimal if no proper subset of F is a cut, and a cut F is a smallest
cut in G if G contains no cut F ′ with |F ′| < |F |. Clearly a smallest cut is also a
minimal one, but the converse might not be true.

Observe also that if F is a minimal cut in G, then G−F has exactly two connected
components, and that the only connected graph without a cut is a singleton graph
K1.

A separator in a connected graph G is a vertex set S so that G−S is disconnected. A
separator S in G is minimal if no proper subset of S is a separator, and a separator
S is a smallest one, if G contains no separator S′ with |S′| < |S|. As above every
smallest separator is also a minimal one, but the converse might no be true.

If S is a minimal separator, then every vertex s ∈ S has a neighbor in every com-
ponent of G− S. Note also that complete graphs contain no separators.

Let G be a graph on at least 2 vertices. We say that G is k-edge-connected if G
contains no cuts of size < k. Edge-connectivity of G, λ(G), is the largest integer `
so that G is `-edge-connected.

Theorem 2.10 (Menger, 4.0) Let G be a graph on at least 2 vertices. G is k-
edge connected if and only if for every pair of vertices u, v G contains at least k

20 DM, lecture notes

edge-disjoint u− v-paths.

Let G be an undirected graph. We say that G is k-vertex-connected or just k-
connected if G contains at least k + 1 vertices and G contains no separators of
< k vertices. (Vertex)-connectivity of G, κ(G), is the largest integer k so that G is
k-(vertex)-connected.

Theorem 2.11 (Menger, 5.0) Let G be an undirected graph on at least 2 vertices.
G is k-connected if and only if for every pair of vertices u, v G contains at least k
internally-disjoint u− v-paths.

Where is the condition on k + 1 vertices in a k-connected graph? Well, if x and y
are distinct vertices of G (mind you, such vertices exist as G contains at least two
vertices) then the k internally-disjoint x− y-paths contain together with x and y at
least k + 1 vertices (one of the paths may be a single edge).

2.4 Biconnectivity and blocks

Let G be a connected graph. What are the possible reasons that G is not 2-
connected? Either G is too small, G has only 1 or 2 vertices, or G contains a
separator of order 1. A single vertex s for which G− s is disconnected is also called
a cutvertex (and a single edge e, so that G− e is disconnected is called a cutedge).

It is natural to define blocks of G as maximal subgraphs of G without cutvertices.
Hence, a block B of G can be either

(B0) an isolated vertex B ≡ K1, or

(B1) a cutedge together with its endvertices B ≡ K2, or

(B2) a maximal 2-connected subgraph of G (which we may sometimes call a proper
block).

Let G be a connected graph. The block tree of G, B(G), is a graph with

(BT1) vertices of B(G) being cutvertices and blocks of G, and

(BT2) a cutvertex x and a block B are adjacent in B(G) if and only if x ∈ V (B).

By construction a block tree is a bipartite graph. As the name suggests it is also a
tree.

Proposition 2.12 If G is a connected graph then B(G) is a tree.

Proof. Assume that B0x0B1x1 . . . xk−1B0 is a cycle in B(G). Let b0, b1 be neighbors
of x0 from B0 and B1 respectively. As x0 is a cutvertex in G vertices b0 and b1 lie in

21 DM, lecture notes

different components of G−x0. On the other hand b0 is reachable from b1 following
a walk along C avoiding x0, which is a contradiction. �

There is an alternative way of defining blocks of G, if we forget about isolated
vertices. Let us define a relation R on the edges-set of G with

eRf ⇐⇒ e = f or e and f lie on a common cycle.

Now R is an equivalence relation on E(G) (transitivity takes some effort, let us
postpone it until the next time) and partitions the edge set into equivalence classes
of edges. A singleton equivalence class consists of an edge e, that lies on no cycle,
such an edge is a cutedge. Now a block is a subgraph of G induced by endvertices
of edges in from a single equivalence class.

Our next computational task is to compute cutvertices, and consequently blocks of
G, in linear time. We shall do this by computing an additional vertex parameter
low(.) using depth first search.

Let G be a connected undirected graph, and let T be its DFS tree with root r.
Every edge uv ∈ E(G) is either a tree edge (one of u, v is the son of the other in
T) or a backward edge (equivalently a forward edge, one of u, v is an ancestor (not
immediate) of the other). There can be no cross edges in an undirected graph G.

Assume that we have computed start times of vertices of G: low(v) is the smallest
start(x) over all vertices x which can be reached from v using tree edges away from
the root r with a possible single backward edge at the end.

We can compute low(.) recursively. When computing low(v) we shall recursively
assume that we have determined low(x) for every descendant x of v.

DFSlow(G, v)
1 color v black;
2 start(v) = low(v) = step;
// step is global and initially set to 1

3 step++;
4 foreach u ∈ N(v) do
5 if u is white then
6 T = T + uv;
7 DFSlow(G, v)

8 foreach u ∈ N(v) do
9 if vu ∈ E(T) and u is a son of v then

10 low(v) = min{low(v), low(u)}
11 else
12 low(v) = min{low(v), start(u)}

Algorithm 2.2: DFSlow recursively computes low(v) for every vertex v.

Proposition 2.13 Algorithm 2.2 DFSlow correctly computes low(v) for every ver-
tex v ∈ V (G).

22 DM, lecture notes

Proof. If v is a leaf of T then v is incident with no tree edges away from the
root, hence low(v) equals the smallest start(x) over its backward neighbors, which
is correctly computed in line 12. Note that in this case line 10 does not apply as no
vertex is a son of a leaf v in T .

Let us now argue that DFSlow correctly computes low(v) for every nonleaf vertex
v. Recursively we may assume that low(x) is correctly computed for every descen-
dant of v, in particular for every son of v. Now a nonstationary path along tree edges
starting from v necessarily goes through a son of v, whose low(v) is by assumption
correctly computed. Hence unless low(v) = start(x) it is either equal to the minimal
low(u) over all sons of v, this is computed on line 10, or is the smallest start(x) over
backward edges emanating from v, which is computed on line 12. �

Let us finish with the characterization of cutvertices, which can be computed using
DFSlow.

Theorem 2.14 Let G be a connected undirected graph, and let r be the root of its
BFS tree T :

• r is a cutvertex if it is incident with ≥ 2 tree edges, and

• a nonroot vertex v is a cutvertex if v has a son y so that low(y) ≥ start(v).

Proof. We know that G contains no cross edges with respect to T . Hence if x and
y are different sons of r in T , then every x − y-path in G uses r, which makes r a
cutvertex. Now if r has only one son in T , then T − r is a spanning tree of G − r.
Hence G− r is connected and r is not a cutvertex.

Let us turn to a nonroot vertex v 6= r. Assume first that there exists a vertex y,
which is a son of v, so that low(y) ≥ start(v). Let Y be the set of descendants of
y (including y itself). We claim that there is no edge between vertices of Y and
vertices of G− v− Y . Assume to the contrary that there exists a y′x edge for some
y′ ∈ Y and x in G − v − Y . As G has no cross edges and y′x is not a tree edge
we conclude that y′x is a backward edge. Now x 6∈ Y implies that x is an ancestor
of v, and also an ancestor of y. Hence low(y) ≤ start(x) < start(v) which is a
contradiction, proving that v is indeed a cutvertex.

Fix a vertex v and let C be an arbitrary component of G − x. As T is a spanning
tree there exists a vertex y ∈ V (C) so that either yv ∈ E(T) or vy ∈ E(T), in
other words v is a son of y or vice versa. Assume first that y is a son of v, and that
low(y) < start(x). This implies that a descendant of y (or y itself) has a neighbor
among ancestors of x, and hence r ∈ C. If v is a son of y then also C contains
r. This shows that if low(y) < start(v) for every y which is a son of v, then every
component of G− v contains r. Hence v is not a cutvertex. �

At the very end, let us state, without proof (this should be obvious as we know the
running time of DFS).

23 DM, lecture notes

Theorem 2.15 Let G be an undirected graph. We can compute cutvertices of G in
linear time O(n+m).

24 DM, lecture notes

3 Constructing 2-connected graphs

3.1 Biconnectivity augmentation problem

Let G be an undirected graph (we shall only discuss undirected graphs in this sec-
tion). If G is not connected and C1, C2, C3, . . . , Ck are its components, then we can
make G connected by adding a set of k−1 edges to G. An edge between two vertices
from different components decreases the component count by exactly one. This also
implies that k − 1 is an optimal (minimal) number of edges one needs to add to G
in order to make it connected.

The problem of making a graph 2-connected (or biconnected , this term is more often
used in this setting) is a more difficult one:

Biconnectivity augmentation problem or BAP

input: undirected connected graph G.

output: a set of undirected edges F , so that G+F is 2-connected (also biconnected)
and |F | is minimal.

The optimal edge set F shall also be called an augmenting edge set .

Traditionally one can observe the problem in a larger class of not-necessarily-connected
graphs, but for our purpose we shall limit ourselves to connected input graphs.

Our first result indicates that when inserting a single edge e we need not to be very
picky about its endvertices.

Proposition 3.1 Let G be a connected graph, let B and B̄ be blocks, and let x, y ∈
V (B) and x̄, ȳ ∈ V (B̄) be non-cutvertices (in fact it is enough to require that x, x̄, y, ȳ
are not contained on a B−B̄ path in B(G)). Then the graphs G+xx̄ and G+yȳ have
the same block structure. More precisely, let B, c2, B2, c3, B3, . . . , Bk−1, ck−1, B̄ be
the unique B− B̄-path in B(G). Then the addition of both xx̄ or yȳ to G constructs
a graph G′ which contains

1. a new block B′ with V (B′) = V (B) ∪ V (B2) ∪ . . . ∪ V (Bk−1) ∪ V (B̄) and

2. a vertex ci is a cutvertex in G′ if and only if degB(G)(ci) ≥ 3 (and in this case
degB(G′) = degB(G)(ci)− 1).

Proof. We shall only do a sketch. Let u, v ∈ V (B′) be different vertices. Then u
and v lie on a cycle which uses a newly added edge (xx̄ or yȳ), and consequently in
the same block. If ci is a cutvertex in G and d = degB(G)(ci) ≥ 3, then ci is adjacent
to exactly d− 2 blocks apart from Bi−1 and Bi in B(G). Now ci is adjacent to B∗

and the very same set of d− 2 blocks in B(G′). �

We would like to make the block tree of the resulting graph as small as possible by
adding a single edge. One possible measure is the number of blocks in the resulting

25 DM, lecture notes

graph. This implies that the B− B̄-path between blocks should be (if not as long as
possible) maximal in terms of containment. This can be achieved by choosing the
blocks B and B̄ among leaf blocks of B(G).

Proposition 3.2 Assume that G can be made 2-connected by adding a set of edges
e1, e2, . . . , ek. Then G can be turned into a 2-connected graph by adding the same
number of edges f1, f2, . . . , fk, so that for every i ∈ {1, . . . , k} the edge fi connects
vertices from two leaf blocks of G+ ei + · · ·+ ei−1.

The text right above the Proposition serves as its proof. Let us note that we when
looking for an optimal set of edges (to add in order to obtain a 2-connected graph
G) we shall always act according to Proposition 3.2 by only adding edges between
pairs of leaf blocks.

There is another consequence of Proposition 3.1: it shows that BAP is indeed a
problem on the block tree of the graph B(G), rather than the graph G itself. By
taking Proposition 3.2 into account we shall with each leaf block B ∈ V (B(G)) store
a vertex v ∈ V (G) which is not one of cutvertices. We shall denote v as vx(B).

In view of this observation we shall skip the graph G altogether and will have only
B(G) in mind. Now vertices of B(G) come in two flavors, blocks and cutvestices of
the original graph. We shall also call them b-vertices and c-vertices, respectively. If
v is a b- od c-vertex of B(G) then by deg(v) we shall denote the degree of v as a
vertex in B(G). and not its degree as a possible vertex in G. (!!!)

Do b-and c-vertices behave differently with respect to the BAP? Imagine a graph G
with a single cutvertex v, which is adjacent to six blocks B1, . . . , B6. It is easy to
see that we need to add at least 5 edges to G to make it 2-connected. On the other
hand let G′ be a graph having a central block B′0, which is adjacent to six different
blocks B′1, . . . , B

′
6 via six different cutvertices of degree 2 (their degree in B(G) !!).

Then adding a suitable set of 3 edges can make the resulting graph 2-connected.

The above analysis yields lower bound on size of the augmenting edge set |F |. If
B(G) contains a c-vertex v with deg(v) = d, then |F | ≥ d − 1, as adding a single
edge to G reduces deg(v) by at most 1. On the other hand let ` be the number of
leaf blocks in G. Then |F | ≥ d`/2e, as adding a single edge may reduce the number
of leaf blocks by at most 2.

It is surprising that the lower bound is in fact the exact one.

Theorem 3.3 (Eswaran, Tarjan) Let G be a connected graph, ` the number of
leaves in B(G) and d the maximal degree of a c-vertex. Then there exists an edge
set F of size

max{d− 1, d`/2e}
so that G+F is a 2-connected graph, and no edge set of strictly fewer edges has this
property.

We shall devote the rest of the section for the proof of the above theorem. In fact
we shall present an efficient algorithm which will, given G or equivalently its block
tree B(G), find an augmenting set F of size |F | = max{d− 1, d `2e} in linear time.

26 DM, lecture notes

Let ` denote the number of leaves in B(G), and let d denote the maximal degree of
a c-vertex.

Let us first consider some small cases, where the number of leaves ` in B(G) is at
most 4. If ` = 2, then B(G) is a path, and the degree of every c-vertex in B(G) is
equal to 2. By adding an edge between two leaf blocks we obtain a graph having a
single block, see Proposition 3.1, which is 2-connected.

If ` = 3 then B(G) contains exactly one vertex of degree 3, and let B1, B2, B3 be
the three leaf blocks. In this case d ≤ 3. The addition of two edges vx(B1)vx(B2)
and vx(B2)vx(B3) turns G into a 2-connected graph.

The story shows a first complication if ` = 4. Let B1, B2, B3, B4 be the leaf blocks.
If d = 4 then the addition of edges vx(B1)vx(B2), vx(B2)vx(B3) and vx(B3)vx(B4)
makes G 2-connected. Otherwise let B1 and B2 be blocks so that the B1 −B2-path
in B(G) contains all vertices of degree ≥ 3 (there exist at most two such vertices).
Now the addition of edges vx(B1)vx(B2) and vx(B3)vx(B4) makes G 2-connected.

Observe, that we have in all above small cases constructed an augmenting set of
exactly max{d− 1, d `2e} edges.

Let us first state a graph theoretic tool. The number of leaves in a tree can be
computed from set of vertices of higher degree.

Proposition 3.4 Let T be a tree, and let ` be the number of its leaves. Then

` = 2 +
∑

deg(v) 6=1

(deg(v)− 2) (3.1)

Proof. A funny fact of the above formula is that it is true also in the trivial case,
where T is having just one vertex. Such a tree has zero leaves and the expression
on the right hand side also evaluates to zero.

It is trivial to observe that the above formula is valid in case T is a path, and also
in the case T has exactly one vertex of degree ≥ 3.

Let us inductively assume that Proposition 3.4 holds for every tree with at most k
vertices of degree ≥ 3. Let T be a tree with k + 1 vertices of large degree and let
e be an edge on a path between two such vertices. The edge e = v1v2, as it is not
contained in a cycle, is a cutedge in T . Let T1, T2 be the components of T − v1v2,
so that v1 ∈ V (T1) and v2 ∈ V (T2), an let us attach the edge v1v2 to both T1 and
T2. (As if we would cut the edge e in half, treating both halfedges as pendant edges
in each respective component.) Now 2 + 2 +

∑
deg(v)6=1(deg(v) − 2) is exactly the

number of leaves in T1 and T2 together, and is on the other hand equal to `+2. �

Let us call a c-vertex v massive if deg(v) > d `2e+ 1, and let v be critical if deg(v) =

d `2e + 1. A chain in B(G) is a path with one endvertex of degree 1 whose internal
vertices are of degree 2. Let v be a vertex of degree ≥ 3. A v-chain is a chain with
v as an endvertex, the other endvertex of degree 1 is also called a v-chain leaf .

27 DM, lecture notes

Using Proposition 3.4 we can show that there cannot be too many massive or critical
c-vertices in B(G).

(1) Let ` ≥ 3 be the number of leaves and let us also assume that the maximal
degree of a c-vertex d ≥ 3. Then

• if B(G) contains a massive c-vertex v, then no other c-vertex can be either
massive or critical,

• if B(G) contains a critical vertex v, then at most one other c-vertex is critical,
and

• if B(G) contains two critical c-vertices u and v, then every other vertex of
B(G) has degree ≤ 2.

The condition d ≥ 3 is a natural one. If B(G) is a path and contains 2 leaves, then
a c-vertex is critical if it has degree 2. There can be a lot of such vertices in B(G).
On the other hand the definition itself implies that a massive vertex has degree at
least 4.

Let us apply equation (3.1). Let v1 and v2 be two critical or massive vertices of
B(G) of degree ≥ 3.

` = 2 +
∑

deg(v)6=1

(deg(v)− 2)

= 2 +
∑

deg(v)≥2

(deg(v)− 2)

≥ 2 + (deg(v1)− 2) + (deg(v2)− 2)

≥ 2 +

⌈
`

2

⌉
− 1 +

⌈
`

2

⌉
− 1

= 2 ·
⌈
`

2

⌉
≥ `

All of the above inequalities are indeed equalities. From this we infer that (1) there
are exactly two vertices in B(G) of degree ≥ 3, both (2) are critical and not massive
and consequently (3) in this case the number of leaves is an even number. ♦

Next we shall show that a massive vertex v determines a sufficient number of v-
chains.

(2) Let v be a massive vertex in B(G). Then there exist at least four v-chains.

Let k be the number of v-chains, and let us count the number of leaves ` in B(G).
Each v-chain contains exactly one leaf, and the remaining d−k subtrees of B(G)−v
contain at least 2(d− k) leaves. Hence

` ≥ k + 2(d− k) = 2d− k ≥ 2(d`/2e+ 2)− k ≥ `+ 4− k ≥ 4.

♦

28 DM, lecture notes

(3) Let v be a massive vertex of degree d in a block tree B(G) with ` leaves. By
inductively adding edges between pairs of v-chain leaves we can transform v to a
critical vertex.

If v is a massive vertex, then d > d`/2e + 1. Observe the change of the expression
d−(d`/2e+1) when adding a single edge between v-chain leaves of B(G). As both d
and ` drop by exactly one, its value decreases by either 1 or zero, depending on the
parity of `. Hence d− (d`/2e+ 1) will eventually be equal to 0, making v a critical
vertex. ♦

Let us call B(G) without massive vertices a balanced tree. We shall see that if B(G)
is a balanced tree with ` ≥ 4 leaves, we can find a pair of leaf blocks B1 and B2, so
that the addition of the edge vx(B1)vx(B2) to G reduces the number of leaves on
B(G) by 2 and does not introduce a massive vertex. We shall say that such blocks
B1 and B2 satisfy the leaf connecting condition.

(4) Let B(G) be a balanced block tree of G with ` ≥ 4. The leaf blocks B1 and
B2 satisfy the leaf connecting condition if the B1 − B2-path P contains all critical
c-vertices, and P either contains two vertices of degree ≥ 3 or a b-vertex of degree
≥ 4.

The newly added edge vx(B1)vx(B2) creates a new block B′. If P contains two
vertices of degree ≥ 3 or a c-vertex of degree ≥ 4, then B′ will contain at least two
cutvertices and will not become a leaf block itself. As the former leaf blocks B1 and
B2 get merged into B′ the number of leaf blocks decreases by 2. If v is a critical
c-vertex in B(G) which is not contained in B′, equivalently it is not a vertex of P ,
then its degree does not drop, and v becomes a massive one. ♦

In order to give a full description of the algorithm and prove its efficiency let us
describe the auxiliary data structures that we shall use.

1. B(G) is a rooted tree, having a b-vertex B0 as its root (let us denote the
subtree of B(G) rooted at v with B(G)v),

2. an ordered list C of c-vertices sorted according to decreasing degrees,

3. a pair of sets B3+ and B2− storing b-vertices of degree ≥ 3 and ≤ 2, respectively,

4. for every vertex v ∈ V (B(G)) and every son u of v let `v,u denote the number
of leaves of B(G) in B(G)u,

5. for every vertex v ∈ V (B(G)) the number of leaves `−v which are descendants
of v.

6. for every v ∈ V (B(G)) the sets of Sv2+ and Sv1 containing the sons of v having
≥ 2 or exactly 1 leaf of B(G) in their respective subtrees.

7. for every leaf block B ∈ V (G(B)) a vertex vx(B) ∈ V (G) which is not a
cutvertex of G,

29 DM, lecture notes

We shall compute the above initial structures in the preprocessing stage. We can
compute `v,u using the bottom-up approach. We shall not require that the sons of a
vertex v are sorted according to the number of leaves in their respective subtrees, yet
we shall assume that we can in constant time pick a son u of v, so that the number
of leaves in B(G)u is ≥ 2 or decide that such a son u does not exist. Similarly we

30 DM, lecture notes

can initially sort C in linear time, as the keys are integers between 1 and n.

BAP(B(G))
1 L = ∅;
2 while B(G) contains a massive vertex v do
3 P,B1, B2 = FindPathMassive(v);
4 AddEdge(P,B1, B2)

5 while V (B(G)) ≥ 2 do
6 P,B1, B2 = FindPathBalanced();
7 AddEdge(P,B1, B2)

8 return L

FindPathMassive(v)
9 let P1 and P2 be v-chains and let B1 and B2 be the corresponding v-chain

leaves;
10 return P1 ∪ P2, B1, B2

FindPathBalanced()
11 let v be a c-vertex of maximal degree;
12 case deg(v) ≥ 3
13 x = v
14 case B3+ 6= ∅
15 choose x ∈ B3+
16 otherwise
17 x = v
18 if deg(x) ≥ 3 then
19 if B(G) contains ≥ 2 vertices of degree ≥ 3 then
20 if x has a descendant y of degree ≥ 3 then
21 let P0 be a x− y path in B(G);
22 let P1 be a y −B2 path where B2 is a leaf;
23 let P2 be a path from x to root an (possibly, if its degree≥ 1)

towards another leaf B1

24 else
25 let P2 be a x−B2 path where B2 is a leaf descendant of x;
26 let P0 be a path from x− y path where y possibility lies on a

path towards root;
27 let P1 be the path from y towards a leaf B1 which contains the

root if P0 does not
28 else
29 let P0 = {x};
30 let P1 and P2 be x-chains and let B1 and B2 be the corresponding

x-chain leaves;

31 if deg(x) = 2 then
32 P0 = {x};
33 let P1 and P2 be x-chains and let B1 and B2 be the corresponding

x-chain leaves;

34 return P1 ∪ P0 ∪ P2, B1, B2

AddEdge(P,B1, B2)
30 compute the new block B′;
31 update data structures;
32 L = L ∪ {vx(B1)vx(B2)}

Algorithm 3.1: BAP and necessary subroutines.

31 DM, lecture notes

Let us first FindPathBalanced. Note that x on line 17 is a critical vertex, if a
critical vertex of degree ≥ 3 exists in B(G). If deg(x) = 2, then B(G) does not
contain vertices of degree ≥ 3 and, in particular, has exactly two leaves.

Now let us turn to line 18, and let us denote the root of B(G) with r. Assume
first that x 6= r. If deg(r) ≥ 3 then we can choose P0 to be the B0 − x path. If
deg(B0) ≤ 2 and both sons y1 and y2 satisfy `r,y1 ≥ 2 and `r,y2 ≥ 2. Then we can
route P0 from x up to r, and then down in the direction of the (other) subtree having
≥ 2 leaves. This will eventually hit in a vertex of degree ≥ 3.

Otherwise we know that the root r does not lie on a path between two vertices of
degree ≥ 3. Does x have an ancestor of degree ≥ 3? We can check this in constant
time, comparing ` and `−v . If ` − `−v ≥ 2, then B(G) contains a vertex of degree
≥ 3 which lies on the path from x to the root r. Finally if ` − `−v = 1, then B(G)
contains another vertex of degree ≥ 3 if and only if Sv2+ 6= ∅, which can again be
decided in constant time.

The case x = r is even easier. B(G) has another vertex of degree ≥ 3 if and only if
Sr2+ 6= ∅.
To put it all together: we can in constant time decide in which direction we should
look for P0. Clearly the amount of time needed to actually find and construct
P0 ∪ P1 ∪ P2 is proportional to the length of the resulting path.

Let G′ be the graph G + vx(B1)vx(B2). How does its block graph B(G′) depend
on B(G)? We compute the new block B′ on line 30, its vertex set is the union of
sets of vertices of blocks which lie on P . If a c-vertex v lies on P and deg(v) ≥ 3,
then v is also a c-vertex of B(G′) whose new degree has decreased by exactly 1. If
deg(v) = 2 then v is no longer a c-vertex of B(G′). Finally as P contains r, then
the newly constructed block B′ serves as the root of B(G′).

We need to refresh auxiliary data structures on line 31 only for vertices of B(G′)
which are descendants of B∗. Now if v 6∈ V (P) then its auxiliary data is left
unchanged. If v is a c-vertex in V (B(G′))∩ V (P), then the corresponding auxiliary
data can be computed in constant time. The data for B′ on the other hand takes time
which is proportional to the length of P , which is up to a constant term proportional
to the difference |V (B(G)) − V (B(G′))|. This implies that we can solve the BAP
problem in linear time.

Theorem 3.5 Let G be an undirected, and let B(G) be its block tree. We can solve
the Biconnectivity Augmentation Problem in O(n+m) time.
Even more, if B(G) is precomputed and has n′ vertices, then the algorithm BAP
computes an augmenting set of edges F in O(n′) time.

Proof. As computing B(G) takes O(n+m) time, and since n′ = O(n), it is enough
to show the latter statement.

Both FindPathMassive and FindPathBalanced take time proportional to the
length P , their output. Also the routine AddEdge takes time, that is proportional
to the length of the input path P . Then there exist positive constants a and b, so

32 DM, lecture notes

that the running time of FindPathBalanced, FindPathMassive, and AddEdge
takes at most a(|P | − 1) + b time.

What is the cumulative running time of BAP on an input graph G = G0? Let
G0, G1, G2, . . . , Gk be the sequence of graphs obtained by inductively adding edges
between b-vertices of paths P1, P2, . . . , Pk, resulting in a 2-connected graph Gk. The
total running time is O((|P1| − 1) + (|P2| − 1) + · · ·+ (|Pk| − 1) + k), which is since
k = O(n′) equal to O(n′). �

3.2 Structure of 2-connected graphs

Let us now turn our attention to 2-connected graphs. An ear decomposition of a
graph G is a sequence of graphs G1, G2, G3, . . . , Gk, so that

(ED1) G1 is a cycle,

(ED2) Gk = G, and

(ED3) Gi is a graph obtained from Gi−1 by attaching a path Pi between two vertices
x and x′ of Gi−1.

The added path Pi is also called an ear , and can also be a single edge.

Theorem 3.6 Let G be an undirected graph. Then G admits an ear decomposition
if and only if G is 2-connected.

Proof. Assume that G admits an ear decomposition: 2-connectivity of G can be
shown by induction. Let G1, G2, G3, . . . , Gk−1, Gk = G be the ear decomposition of
G. Inductively we may assume that Gk−1 is 2-connected, as its ear decomposition
is shorter. If G is not 2-connected, then G contains a cutvertex v. As Gk−1 is
2-connected Gk−1− v is a connected graph. Hence also Gk−1− v ∪Pk. This implies
that v is an internal vertex of Pk. This is also not possible, as G−v can be obtained
by attaching a pair of pendant paths to a connected graph Gk.

As G is 2-connected, the minimal degree of a vertex is at least 2, which implies
that G contains a cycle subgraph G1. Assume that we have already constructed the
sequence G1, G2, . . . , Gj . Assume there exists a vertex v ∈ V (G) \ V (Gj). As G is
a 2-connected graph there exist v−V (Gj) paths Q,Q′ which share vertex v but are
otherwise disjoint (and only meet V (Gj) in their endvertices). Their union Q ∪ Q′
can be used as the next ear Pj+1. Hence we may assume that Gj is a spanning
subgraph of G. Now the missing edges from E(G) \E(Gj) serve at the final ears in
the ear decomposition of G. �

Let G be an undirected graph. An st-labeling (or also st-ordering) of G is a linear
ordering of its vertices v1, v2, . . . , vn, so that for every vertex vi, 1 < i < n, there
exist indices j < i and k > i, so that vi is adjacent to both vj and vk.

33 DM, lecture notes

We can picture an st-ordering by arranging vertices of G on a real line, so that every
vertex, except the leftmost and the rightmost one, has a vertex both to the left and
to the right of itself.

The origin of the name st-labeling comes from directed graphs. If we orient every
edge of G from a vertex of the lower label towards the vertex of the higher label, we
obtain a dag with a single source s = v1 and a single sink t = vn.

Let us first state a nice property of an st-labeling of a graph G.

Proposition 3.7 Let v1, v2, . . . , vn be an st-labeling of G. Then for every i ∈
{1, . . . , n−1} both induced subgraphs G[v1, . . . , vi] and G[vi+1, . . . , vn] are connected.

Proof. Fix i ∈ {1, . . . , n− 1} and let j ≤ i. Inductively can show that v1 and vj lie
in the same component: this is obviously true if j = 1, and is also true for bigger
values of j, as vj is adjacent to a vertex with a smaller index. The proof follows by
symmetry. �

Is there a relation between an st-labeling and an ear decomposition? Indeed, every
ear decomposition can be transformed to an st-labeling, as we shall see in the proof
of Theorem 3.8.

Does every graph admit an st-labeling? Clearly disconnected graphs do not admit
st-labelings. Also not every connected graph admits an st labeling. Let G be
a connected graph and assume that B(G) contains three leaf blocks B1, B2, B3.
Now, being leaf blocks, Bi, i = 1, 2, 3, attaches to the rest of the graph through a
cutvertex bi. Assume that G admits an st-labeling v1, . . . , vn. We may without loss
of generality assume that neither v1 nor vn are vertices of B1. Now let I = {i | vi ∈
V (B1)} and let imin and imax be the smallest and largest indices in I, respectively.
As b1 can only be identical to one of vimin or vimax , either vimin has no neighbor to
its left or vimax has no neighbor to its right.

If G is a connected graph so that B(G) contains exactly 2 leaf blocks, then G can
be transformed into a 2-connected graph with an addition of a single edge. These
graphs do admit an st-labeling.

Theorem 3.8 Let G be a 2-connected graph and let xy ∈ E(G). Then G admits an
st-labeling so that x = v1 and y = vn.

Proof. Let G1, G2, . . . , Gk = G be a fixed ear decomposition of G, so that xy ∈
E(G1). We shall inductively construct linear orders of vertices of graphs in the
decomposition, and compute labels of vertices only with the final ordering L.

The x− y-Hamilton path represents the initial order of V (G1). Inductively assume
that we have constructed an ordering of Gi. Let xi, yi ∈ V (Gi) be the endvertices
of the next ear Pi+1. We can insert the internal vertices of Pi+1 between L so that
every internal vertex of Pi+1 lies in L between its neighbors in Pi+1 (not necessarily
continuously). �

34 DM, lecture notes

Let us finish with an algorithm for computing an st-ordering of a 2-connected graph
using Algorithm 2.2 DFSlow. Let G be a 2-connected graph, and xy a fixed edge.
In order to construct an st-labeling with x the initial vertex and y the terminal
one let us first compute both the starting times and low points start(v) and low(v)
for every vertex v ∈ V (G), assuming the search starts at x moving to y next, i.e.
start(x) = 1 and start(y) = 2. Let us denote the start time of the father of v by
pred(v). As G is a 2 connected graph we have

(5) for every vertex v 6= x, y we have pred(v) > low(v),

as if pred(v) ≤ low(v) implies that pred(v) is a cutvertex in G since his son v has
its lowpoint low(v) at least as large as pred(v). Let us consider vertices according
to their start times. Choose v 6= x, y and let us assume that the partial st-ordering
L contains every vertex whose start time is strictly smaller than start(v). Then let
us

extend L by putting (1) v between pred(v) and low(v) and also (2) next to pred(v).
(3.2)

Let v 6= s, t. A v-lowpath is a v − low(v)-path following tree edges with a possible
final back edge. We claim that in the end (3.2) produces an st-labeling of the whole
graph G. We have to show that every vertex v 6= x, y has a neighbor both to its
left and to its right, and we will do it by induction on the length of the v-lowpath
P . If |P | = 1 then v is adjacent to both pred(v) and low(v), and thus has a left
and a right neighbor in the final ordering. If |P | > 2 let v′ be adjacent to v along
P . This implies that v′ is a son of v, low(v′) = low(v), and v′-lowpath P ′ is strictly
shorter than P . As v′ lies between v = pred(v′) and low(v′) = low(v) in the final
ordering, both v′ and low(v) lie to the same side relative to v, and to the other side
as pred(v). Hence also v has both a neighbor to the left and a neighbor to the right.

There is an algorithmic caveat. In order to be able to add elements immediately
next to a fixed element, the data structure containing the temporary linear ordering
should be a doubly linked list. But given two elements from a doubly linked list
low(v) and pred(v), how can we quickly (in constant time) decide which lies to the
left of the other?

There is a solution to the above problem by using signs of vertices: sign(v) = + (or
−) indicates that a vertex u whose low(u) = v should be put in L before (or after)

35 DM, lecture notes

v, respectively. A sign of a vertex may change in time, though.

STlabel(G, s, t)
1 run DFSlow to compute start(v), low(v),
2 and pred(v), so that start(s) = 1 and start(t) = 2;
3 set sign(s) = − and L = [s, t];
4 for v ∈ V (G) in the increasing start(.) order do
5 if sign(low(v)) = + then
6 insert v immediately after pred(v) in L;
7 set sign(pred(v)) := −
8 if sign(low(v)) = − then
9 insert v just before pred(v) in L;

10 set sign(pred(v)) := +

11 return L

Algorithm 3.2: st-labeling algorithm

Theorem 3.9 The algorithm STlabel correctly computes L and does so in time
O(n+m).

Proof. Time complexity is easy, as DFSlow runs in O(n + m) time, and the rest
can be done in O(n) time, provided we store L in a doubly linked list.

Let v be the current vertex on line 4 of STlabel. We claim that upon inserting v
in L every proper ancestor u of v has a sign describing its relative positions to v: if
u is before v in L then sign(u) = −, and u lies after v then sign(u) = +.

Let v∗ = pred(v). Upon inserting v in L we have only adjusted the sign of v∗. Hence
for every ancestor u of v∗ its sign sign(u) describes its relative position to v∗ as well:
sign(u) = − if and only if u lies before v∗ in L. Now low(v) is a proper ancestor of
v∗ and lies to the left of v∗ if and only if sign(low(v)) = −. In this case line 8 puts v
immediately to the left of v∗ which in turn implies that (1) low(v) is to the left of v
and (2) sign(v∗) indicates the relative position of v∗ with respect to v, as claimed.

By symmetry the proof is finished. �

36 DM, lecture notes

4 Planar graphs

4.1 Embedding as a drawing

Choose a graph G. We would like to draw G in the plane without crossings. But let
us first tackle the simpler question on how to draw vertices and edges.

An arc in Σ is an embedding (injective continuous mapping) of an interval [0, 1] into
S, a simple closed curve is an embedding of S1 in Σ. We shall implicitly assume
that mappings are nice — they do not contain topological pathologies. We may for
example assume that an embedding is piecewise linear (provided Σ is equipped with
a linear-space-like structure) or differentiable (if Σ is smooth).

A drawing of G in Σ is a mapping

D : V (G) ∪ E(G)→ Σ (4.1)

satisfying the following conditions:

(D1) for different vertices u, v ∈ V (G) we have D(u) 6= D(v), the restriction of D
to V (G) is injective,

(D2) for every edge e = uv ∈ E(G) its image D(e) is an arc whose endpoints are
D(u) and D(v), and

(D3) there are no unnecessary intersections — if u is not an endvertex of e then
D(u) and D(v) are disjoint, and the only possible intersection of D(e) and
D(f) is the image of their common endvertex.

We shall first focus on planar drawings where Σ = R2, and minutes later establish
a connection with drawings in the sphere.

Graph G is planar if G admits a planar drawing D. A pair (G,D) is called a plane
graph. Let us define D(G) as the union of images of vertices and edges of G and
call D(G) the drawing of G.

Given a fixed drawing, we shall informally identify G with its drawing and speak of
the plane graph G.

A face of (G,D) is a connected component of Σ \ D(G). Informally faces can be
obtained by cutting the surface Σ with scissors running along drawings of edges. In
a planar drawing, exactly one of the faces is unbounded, we shall call it the infinite
face. A face can be described with a facial walk — a sequence of vertices that we
encounter by travelling along its boundary.

Let S2 denote the 2-sphere, set of points in 3-space at unit distance from the origin,
and let N denote the north pole of S2 (the point (0, 0, 1)). We know that the
stereographic projection ϕ maps S2 \N bijectively to R2 (the xy plane in 3-space).
Let r be a one-way infinite ray originating in the north pole. If vs ∈ S2 \N , vr ∈ R2,
and both lie in r, then ϕ(vs) = vr.

37 DM, lecture notes

If (G,D) is a plane graph, then the mapping ϕ−1 ◦D is a drawing of G in the sphere
(which misses N). Similarly if D′ is a drawing of G in the punctured sphere S2 \N ,
then ϕ ◦D′ is a planar drawing of G.

Now let f∞ be the infinite face of (G,D). Now ϕ−1 ◦ D is a drawing of G in the
sphere, and ϕ−1(f∞) is a face in the spherical drawing containing N . Let R be an
arbitrary rotation of the sphere, and consider the mapping ϕ ◦R ◦ϕ−1 ◦D. We may
slightly perturb R (if necessary at all) so that the north pole is not the image of a
vertex or an edge. The set of facial walks has stayed the same, but the facial walk
of f∞ may now describe a bounded face.

The above argument implies that the infinite face of a planar drawing f∞ is just an
inconvenience (as every face can be made the infinite one if we rotate the spherical
projection of the planar drawing). On the other it can be a feature of the drawing:
if in some case we would like to pick a particular face from a planar drawing we can
always name it the infinite face.

4.2 Combinatorial embeddings

Let G be a plane graph, and let us choose an orientation — say clockwise — in
the plane. For every vertex v let πv denote the cyclic ordering of neighbors of v in
the clockwise (i.e. chosen orientation) ordering around v. The collection of all cyclic
orderings {πv | v ∈ V (G)} is called rotation system of the drawing of G.

If uv ∈ V (G), then u′ = πv(u) is called the successor of u around v and symmetrically
u is the predecessor of u′ around v. The ordered triple [u′, v, u] is then also called
an angle. These terms have the following geometric interpretation. Choose a point
p on D(vu) very close to D(v). Rotating p (clockwise) around u will first intersect
D(G) in a point of D(vu′).

Let v0v1 be an edge of G. The sequence v0v1v2 . . . vd−1 is a facial walk if

(F1) for every i = 1 ∈ {0, . . . , d−1} the triple [vi, vi+1, vi+2] is an angle (indices are
taken mod d) and

(F2) no angle is repeated, for i 6= j we have [vi, vi+1, vi+2] 6= [vj , vj+1, vj+2].

Condition (F1) implies that we follow a face along consecutive angles, and (F2)
prevents of going around the face twice.

Let us look at the the cube graph Q3, with vertices V (Q3) = {1, . . . , 8}. The edge
set will implicitly defined by the rotation system

38 DM, lecture notes

πv1 = (v2, v3, v5)
πv2 = (v1, v7, v4)
πv3 = (v1, v4, v5)
πv4 = (v2, v6, v3)
πv5 = (v3, v6, v8)
πv6 = (v4, v7, v5)
πv7 = (v2, v8, v6)
πv8 = (v1, v5, v7)

In order to compute the facial walks (which in turn determine faces) let us follow
angles starting from every possible direction of an edge. Choose, for example v1v2.
Now v4 is the predecessor of v1 around v2, as πv2(v4) = v1, hence [v1, v2, v4] is an
angle. The following three angles are [v2, v4, v3], [v4, v3, v1], and [v3, v1, v2], and the
next angle [v1, v2, v4] is the repetition of the first one. Hence we obtain a facial walk
v1v2v3v4.

The remaining facial walks are v2v1v8v7, v4v2v7v6, v4v6v5v3, v1v3v5v8, and v5v6v7v8.
Observe that every edge appears exactly twice in the facial walks, once in each
direction.

Similarly, given a collection of facial walks (a collection of walks in which every edge
exactly twice, once in each of the directions) determines the rotation system: on one
hand we can determine the lists of neighbors of each vertex v, on the other hand we
can for each neighbor u of v determine its successor in the rotation system — we
only need to find the vertex u′ which immediately precedes v, u in the collection of
facial walks.

It seems that the original choice of the orientation (clockwise or counter-clockwise)
produces a different rotation system, and consequently a different set of faces. We
shall however declare these choices being equivalent: by reversing all cyclic orderings
in a rotation system has a consequence that the constructed facial walks all run in
different directions.

This motivates us to define the combinatorial embedding of G as every structure
that uniquely determines both the rotation system and the set of facial walks in a
drawing of G (up to a possible reversal).

Now a combinatorial embedding may not produce a planar drawing. Fortunately,
there is only one criterion to meet. Provided that the combinatorial embedding
determines the correct number of faces (see Theorem 4.9) then it also determines a
drawing in the plane.

Let us finish this subsection with a definition. Let f be a face of a drawing of a
planar graph G. The length of f , deg(f), is defined as the length of its facial walk.

4.3 Results from topology

Let us state a couple of mathematical (indeed topological) theorems. These results
are surprising in the following way — they seem to be obviously true. Yet they

39 DM, lecture notes

require deep (i.e. this is not freshman-year-mathematics) and technical proofs which
are way above our reach.

Theorem 4.1 (Jordan Curve Theorem) Let C be a simple closed curve in R2.
Then R2 \C has exactly two connected components: the interior of C is the bounded
component and the exterior of C is unbounded. C is the boundary of both the interior
and exterior components.

Theorem 4.2 (Three arcs theorem) Let P1, P2, P3 be three arcs with common
endpoints x and y, and otherwise disjoint in R2. Let z1 and z2 be interior points of
P1 and P2, respectively. Let P be an arbitrary z1 − z2-arc, which lies in the same
connected component of R2 \ (P1 ∪ P2) as P3. Then P ∩ P3 6= ∅.

4.4 Connectivity and planar graphs

Let G be a disconnected graph. Then G is planar if and only if every component
of G is planar, as disjoint components can be drawn in the plane independently, far
apart. Hence we shall in the sequel limit ourselves to connected graphs.

Let G be a graph which is not 2-connected, and contains at least 3 vertices. Then G
contains at least one cutvertex, and possibly also a cutedge. These play a particular
role in case G is planar.

Proposition 4.3 Let G be a plane graph.
A vertex v is a cutvertex in G if and only if there exists a face f so that v appears
at least twice on its facial walk.
An edge e is a cutedge in G if and only if there exists a face f ′ so that e is traversed
exactly twice on a facial walk of f ′. In this case each direction of e is traversed
exactly once.

Proof. Assume first that v is a cutvertex and let G1 be a component of G. Let us
color all edges of G1 + v in red, and the rest of edges green. Now the local rotation
πv determines a mixed angle (v0, v, v1), an angle in which the edge v0v is green and
vv1 is a red edge. Let f be the face containing the angle (v0, v, v1) and observe the
colors of edges along its facial walk. They must change at least twice, and this can
only happen in v, as v is the only vertex incident with edges of both colors.

Assume that the facial walk of f enters v twice. Let (v0, v, v1) and (u0, v, u1) be the
corresponding angles. We can construct a simple closed curve C entering v between
vv0 and vv1 and leaving between vu0 and vu1, which is otherwise disjoint with G.
As no v0 − v1-path can pass through C \ {v}, vertices v0 and v1 lie in different
components of G− v.

The edge-part of the proof can be done analogously. �

As 2-connected planar graphs do not contain cutvertices, we have the following easy
corollary.

40 DM, lecture notes

Corollary 4.4 Let G be a 2-connected planar graph, and let D be an arbitrary
drawing of G. Then every facial walk of (D(G) is a cycle.

Corollary 4.4 has itself a rather nice corollary (see, again). Facial cycles of D(G) can
be interpreted as subgraphs of G. On the other hand it is not true that the graph G
itself determines the set of facial cycles. Even a 2-connected graph can have several
drawings in the plane, which in turn determine different collections of facial cycles
in each of the embeddings.

Consider the following scenario. Let G be a plane graph, and let x, y be a 2-separator
in G. This implies that we can find a simple closed curve C, passing through both
x and y and otherwise disjoint from G, so that both the interior and exterior of C
contain vertices of G, respectively. We can now reflect the interior of C, keeping x
and y fixed, in order to obtain a different embedding of G. This procedure is called
a Whitney flip.

Theorem 4.5 (Whitney) Let D1 and D2 be combinatorial embeddings of a 2-
connected planar graph G. Then D2 can be obtained from D1 by a series of Whitney
flips.

Now a 3-connected graph contains no 2-separators, so no Whitney flips are possible
in an embedding of a 3-connected planar graph. This implies the following corollary
of Theorem 4.5.

Theorem 4.6 Let G be a 3-connected planar graph. Then G has a unique combi-
natorial embedding in the plane.

Now Theorem 4.6 implies that in a 3-connected planar graph the collection of facial
walks (these are indeed cycles by Corollary 4.4) is uniquely determined. It is not
surprising that these can be described in a purely combinatorial way.

Theorem 4.7 Let G be a 3-connected planar graph. Then the collection of faces of
G is exactly the set of nonseparating induced cycles of G.

Proof. Assume G is drawn in the plane, and let C be a face of G (we shall also
assume that C is not drawn as the infinite face so that its interior is empty). Let
u, v be nonconsecutive vertices along C which are adjacent. Choose an u− v-arc in
the interior of C. Together with the edge uv it forms a simple closed curve which
separates vertices of the two segments of C − v − u. This is not possible as G is a
3-connected graph. Therefore C is induced.

Now let x, y 6∈ V (C). As G is 3-connected there exist three internally disjoint x− y-
paths P1, P2, and P3. Now C lies in one of the regions bounded by two among these
paths not containing the third, without loss of generality P1 ∪ P2. Hence C and
P3 have no vertices in common and C does not separate x form y. As x, y were
arbitrary this implies that C is not separating.

41 DM, lecture notes

For the other direction observe that a nonseparating induced cycle C cannot con-
tain vertices of G both in its interior and its exterior. Hence we may without loss
of generality assume that its interior contains no vertices of G. As C is an induced
cycle its interior cannot contain edges of G either. Hence C is a face. �

A triangulation is a plane graph G in which every face is of length 3 (recall that G
can have no parallel edges).

Proposition 4.8 Let T be a triangulation. Then T is 3-connected. Moreover if S
is a minimal separator in T , then S induces a cycle.

Proof. Let S be a minimal separator in T , and let T1 be a component of T −S. Let
us replicate the trick by coloring edges. Let us color edges in T1 as well as edges
between S and T1 red, edges between vertices of S black, and remaining edges green.
If |S| ≤ 2 then there exists a face f with an angle (u, s, x) where us is a green edge
and sx is a red edge. As x and u are not adjacent, |f | ≥ 4, which is a contradiction.

Let S be a minimal separator in T . Now Proposition 4.15 implies that T − S con-
tains exactly two components T1 and T2. Let us color edges of T in three colors red,
green, and black as above, and let us again use the fact that no angle contains a
red and a green edge. Hence each vertex s ∈ S is incident with at least two black
edges. This implies that G[S] contains a cycle. Let C1 be the shortest cycle of G[S]
so that both its interior and exterior contains a vertex of G. If V (C1) 6= S, then we
have a contradiction with minimality of S. Let ss′ ∈ E(G) be an edge between two
nonconsecutive vertices of C1. Now C1 + ss′ divides R2 into three regions so that
(i) at least two contain vertices of G (as C1 is a separating cycle) and at (ii) least
two are empty as the both short cycles of C1 + ss′ are nonseparating, which is a
contradiction. �

4.5 Euler formula

Let G be a plane graph. Let us with F (G) denote the set of faces of G.

Theorem 4.9 (Euler formula) Let G be a connected plane graph. Then

|V (G)| − |E(G)|+ |F (G)| = 2

Proof. Choose a spanning tree T of G. Now V (T) = V (G), E(T) = V (T) − 1 =
V (G)− 1 and F (T) = 1, hence

|V (T)| − |E(T)|+ |F (T)| = |V (G)| − (|V (G)| − 1) + 1 = 2, (4.2)

in other words, Euler formula holds for the spanning tree T . Now adding an edge of
E(G) \E(T) has the following effect: number of vertices does obviously not change,

42 DM, lecture notes

and the number of edges increases by one. An addition of a new edge (it is not
a cutedge as together with T it forms a cycle) divides an existing face into a pair
of new faces, and thus increases the number of faces by one as well. Hence Euler
formula holds by induction on the number of edges in E(G) \ E(T) for the original
graph G as well. �

Now Euler formula effectively bounds the number of edges in a planar graph:

Proposition 4.10 Let G be a (planar) plane graph with at least 3 vertices. Then

1. |E(G)| ≤ 3|V (G)| − 6, and

2. |E(G)| = 3|V (G)| − 6 if and only if G is a triangulation.

Proof. Assume G is drawn in the plane, and let us sum the lengths of its faces.

2|E(G) =
∑

f∈F (G)

deg(f) ≥ 3|F (G)|

The first equality follows as every edge appears exactly twice along facial walks, and
the second inequality as the length of each face is at least 3. Note that equality
arises if and only if G is a triangulation, both in the above and consequently below
computation.

3|V (G)| − 6 = 3|E(G)| − 3|F (G)| ≥ 3|E(G)| − 2|E(G)| = |E(G)|

�

Let us continue with a technical lemma.

Lemma 4.11 Let G be a plane graph. Then G is bipartite if and only if all facial
walks are of even length.

Proof. Clearly no closed walk in a bipartite graph can be of odd length. For the
converse, let us choose a cycle C in G. Now |C| has the same parity as the sum of
parities of lengths of faces, which are contained in the interior of C. This follows
easily by induction on the number of faces in the interior of C. �

Proposition 4.12 Let G be a bipartite (planar) plane graph with at least 3 vertices.
Then

1. |E(G)| ≤ 2|V (G)| − 4, and

2. |E(G)| = 2|V (G)| − 4 if and only if G is a quadrangulation.

43 DM, lecture notes

A quadrangulation is a plane graph whose faces are all of length 4. The proof of
Proposition 4.12 can be settled in the very same manner as the proof of Proposi-
tion 4.10. The only difference is that every face in a bipartite plane graph has to be
longer than 4.

We have nevertheless devised the necessary tools to find first examples of nonplanar
graphs.

Proposition 4.13 K5 and K3,3 are not planar graphs.

Proof. K5 has 5 vertices and 10 edges, and K3,3 is a bipartite graph with 6 vertices
and 9 edges. By Proposition 4.10 an Proposition 4.12 their numbers of edges are
too big for them to be planar. �

Let G be a planar graph. Clearly the following three operations preserve planarity:
deleting vertices, deleting edges, and subdividing edges (replacing a single edge with
a longer path). All these operations can namely be carried out not only on the graph
G itself, but also on its drawings.

Hence the class of all planar graphs is closed under taking subgraphs and also under
taking subdivisions.

There is another operation which preserves planarity, the edge contraction. Let
e = uv be an edge in G. Let Nu,v be the set of vertices of G − u − v which are
adjacent to at least one of u, v. The graph G/e is obtained form G − u − w by
adding a new vertex xuv and making it adjacent to every vertex of Nu,v. We say
that G/e is obtained from G by contracting e.

If G is a plane graph, then the drawing of G/e can be obtained by drawing xuv on a
midpoint of the edge uv. The xuv−Nu,v edges can be drawn simultaneously without
crossings in the vicinity of uv and edges incident with either u or v.

We call a graph H a minor of G, if H can be obtained from G by a series of vertex
deletions, edge deletions, and edge contractions.

By above description the class of planar graphs is also minor closed .

It is therefore not surprising that we can characterize planar graphs both in terms
of forbidden subdivisions and also forbidden minors. What is surprising is the fact
that the sets of obstructions is the same in both cases, and that K5 and K3,3 are
indeed the smallest nonplanar graphs.

Theorem 4.14 (Kuratowski, Wagner) G is planar if and only if

1. G does not contain a subdivision of K5 or K3,3 (or equivalently)

2. G does not contain a K5 or K3,3 as a minor.

We shall skip the proof.

Finally let us state and prove a proposition on the number of components relative
to a small separator.

44 DM, lecture notes

Proposition 4.15 Let G be a 3-connected planar graph, and let S be a minimal
separator. Then G− S contains exactly two connected components.

Proof. Assume that G − S contains three connected components G1, G2, and G3.
Let us contract G1, G2, and G3 to single vertices g1, g2, g3, respectively (we can do
that inductively, as contracting a single edge reduces the vertex-count by one). As S
is a minimal separator, every vertex si ∈ S has a neighbor in each of the components
of G − S. Hence every vertex of S is adjacent to g1, g2, and g3 in the contracted
graph. As |S| ≥ 3 we obtain a K3,3-minor in G, which is absurd. �

4.6 Dual graphs

Let G be a (connected) plane graph. We can construct the dual graph G∗ in the
following way:

1. for every face f ∈ F (G) put a vertex f∗ ∈ V (G∗) in the interior of f , and

2. for every edge e ∈ E(G) so that faces f1 and f2 contain e in their respective
boundaries, the vertices f∗1 and f∗2 are adjacent via an edge e∗ in G∗.

The edge e∗ is also called the dual edge of e, which also means that there exists a
bijective correspondence between edges of G and those of G∗.

Dual graph G∗ appears to be a purely geometric concept. Yet it turns out to be
of a different, combinatorial intact, flavor. Minimal edge-cuts in G correspond to
cycles of G∗ and vice-versa. Cycles in G correspond to minimal edge cuts of G∗.
This is due to Jordan Curve Theorem 4.1. A cycle C in G is a simple closed curve
in the plane (sphere) and separates R2 into exactly two connected components, the
interior and exterior of C. Let V ∗1 be the set of vertices of G∗ (i.e. faces of G) which
lie in the interior of C, and V ∗2 be the set of vertices of G∗ which lie in exterior of
C. Now every V ∗1 − V ∗2 -path in G∗ crosses C, and hence uses an edge e∗ which is a
dual edge of some edge e ∈ E(C). Hence the collection of dual edges of E(C) is a
cut in G∗. It is indeed a minimal cut, as the end vertices of each edge e∗ ∈ E∗(C)
lie in different components of R2 \ C.

It is easy to argue that G∗∗ = G, if G is a connected plane graph.

How are deletion and contraction of an edge in G and its dual G∗ related? The
deletion of an edge e in E(G) merge the faces f1, f2 on either side of G into a
single face f1,2. The same effect can be produced in G∗ by contracting its dual edge
e∗ = f∗1 f

∗
2 . And conversely, contracting an edge in G has the same effect as deleting

its dual edge e∗ in G∗.

Hence contraction and deletion of edges form a pair of dual operations. The execu-
tion of one operation in one of the graphs has exactly the same effect (as effect on
the pair of graphs, the original and its dual) as executing the other operation in the
dual graph.

45 DM, lecture notes

5 Discharging technique

5.1 Consequences of Euler formula

Let G be a connected plane graph. Euler formula (Theorem 4.9) implies several
structural results for planar graphs.

Proposition 5.1 Let G be a plane graph.

• G contains a vertex of degree ≤ 5,

• if δ(G) = 5 then G contains at lest 12 vertices of degree 5.

Proof. If δ(G) ≥ 6, then summing vertex degrees implies that 2|E(G)| =
∑

v∈V (G) deg(v) ≥
6|V (G)| which in turn contradicts the fact that |E(G) ≤ 3|V (G)| − 6, see Proposi-
tion 4.10.

Further we may assume that G is a maximal planar graph (i.e. a trinagulation) as
addition of edges cannot increase the number of vertices of small degree, and also
cannot decrease the minimum degree. Let n5 denote the number of vertices of degree
5 in G, and let n6+ denote the number of vertices of larger degree in G.

Then 2|E(G)| =
∑

v∈V (G) deg(v) ≥ 5n5 + 6n6+ . By Proposition 4.10 the expression
2|E(G)| ≤ 6|V (G)| − 12 = 6n5 + 6n6+ − 12. This implies that n5 ≥ 12. �

A graph G is called k-degenerate if we can obtain an empty graph by repetitively
deleting vertices of degree ≤ k starting from G. Equivalently stated, every subgraph
of G has a vertex of degree ≤ k. An easy consequence of Proposition 5.1 is that
planar graphs are 5-degenerate. Starting with a planar graph, deleting vertices of
degree ≤ 5 will ultimately lead to the empty graph.

Proposition 5.2 Let G be a planar graph with n vertices. Then∑
e=uv∈E(G)

min{deg(u),deg(v)} ≤ 10|E(G)| = O(n)

Proof. Let us number vertices v1, v2, v3, . . . , vn, so that vi has smallest degree (which
is ≤ 5) in G[vi, . . . , vn]. Now∑

e=vkv`∈E(G)

min{deg(vk),deg(v`)}

≤
∑

e=vkv`∈E(G)

deg(vmin{k,`})

=

n∑
i=1

deg(vi) · |{j | j > i and vivj ∈ E(G)}|

≤
n∑
i=1

5 deg(vi) = 10|E(G)| = O(n),

46 DM, lecture notes

as the equality between second and third lines follows by counting the number of
edges, so that vi is their endvertex with the smaller index. �

5.2 Triangulating a plane graph

One of the basic problems is turning a planar/plane graph G into a triangulation
by adding edges. Let G be a planar/plane graph with n ≥ 3 vertices and m edges.
If m < 3n− 6 then at least one of the faces f in an arbitrary drawing of G (in case
G is not actually a plane graph, but merely a planar one) has length ≥ 4. Pick
a drawing of G and let f be a long face of deg(f) = k ≥ 4. Let v1v2v3 . . . vk be
its facial walk. By adding an edge v1v3 in the interior of face f we have increased
the total number of edges by one, which is a single step towards making all faces of
length 3. But there is a catch, the edge v1v3 might have already been present in the
original graph, lying in the exterior of face f . As we do not want parallel edges we
have to be a bit more careful.

triangulate(G)
1 while G contains a face f of length deg(f) = k ≥ 4 do
2 let v0 be a vertex of smallest degree along f ;
3 if v0 has a nonconsecutive neighbor vi along f then
4 foreach j ∈ {i+ 1, i+ 2, . . . , k − 1} do
5 add edge v1vj
6 foreach j ∈ {2, 3, . . . , i− 1} do
7 add edge vi+1vj
8 else
9 foreach j ∈ {2, 3, . . . , k − 2} do

10 add edge v0vj

Algorithm 5.1: triangulate(G)

Proposition 5.3 Let G be a 2-connected plane graph. Then Algorithm 5.1 correctly
computes a plane triangulation TG so that G is a spanning subgraph of TG.

Proof. It is easy to see that in either of if-cases on line 3 the algorithm triangu-
lates the long face f , and the outer while loop takes care that every long face is
triangulated upon finishing.

We only need to argue that no parallel edges are inserted in the run. This is clear if v0
is not adjacent to another vertex of f , apart from the consecutive neighbors along f .
On the other hand if v0vi is an edge and 2 ≤ i ≤ k−2 then by Theorem 4.2 no pair of
vertices x, y, which lie on different segments of f−v0−vi can be adjacent. Hence the
inserted edges on lines 5 and 7 do not form parallel pairs with existing edges. �

Can we triangulate a plane graph G which is not 2-connected in the first place?
There are some additional technical difficulties as facial walks in a plane graph

47 DM, lecture notes

which is not 2-connected can have repeated vertices. Rather than specifying a more
general version of Algorithm 5.1 which would work on a larger class of input graphs
let us describe a tool which works in a plane graph G having cutvertices.

Let G be a plane graph and v its cutvertex. Let πv be the local rotation of neighbors
around v in G. Assume that v1 is a predecessor of v2 around v, πv(v1) = v2. Then
adding the edge v1v2 to G, adjusting πv1 and πv2 , so that v is the predecessor of v1
around v2 and that v2 is the predecessor of v around v1 produces a plane graph G′

with one block less in its block-tree. By applying the analogous operation on all pairs
of predecessor-successor from different blocks, and iteratively over all cutvertices of
G we obtain a plane 2-connected supergraph G′ of G, so that V (G′) = V (G).

What we shall care next is the time complexity of Algorithm 5.1. Observe that
for a connected planar graph we have |V (G)| − 1 ≤ |E(G)| ≤ 3|V (G)| − 6. This
implies that the number of vertices and the number of edges are of the same order
of magnitude and hence O(n) = O(m) if we use n and m for the numbers of vertices
and edges, respectively.

Theorem 5.4 Let G be a 2-connected plane graph. Then Algorithm 5.1 runs in
linear time.

Proof. Let f1, f2, . . . , fk be the list of long faces in G = G0. Let Gi denote the
graph obtained after triangulating the faces f1, . . . , f i by Algorithm 5.1.

In order to find the vertex v0 of smallest degree along f ` we have to traverse all
vertices of f ` which takes O(|f `|) time. In this process we also flag every vertex
of f `, so that we can check for possible neighbors of v0 along f ` in O(degG`−1

(v0))

time. Adding the edges in order to triangulate f ` takes time O(|f `|) and so does
removing the flags of vertices along f ` at the end.

Hence the total time complexity is equal to

O

(
k∑
i=1

deg(f i)

)
+O

(
k∑
i=1

min
v∈f i
{degGi−1

(v)}

)
. (5.1)

Let us estimate the terms separately. On one hand

k∑
i=1

deg(f i) ≤
∑

f∈F (G)

deg(f) = 2|E(G)|.

48 DM, lecture notes

The other sum proves to be more troublesome:

k∑
i=1

min
v∈f i
{degGi−1

(v)}

≤
k∑
i=1

min
v∈f i
{degGk

(v)}

≤
k∑
i=1

1

4

∑
e=uv∈E(f i)

min{degGk
(u), degGk

(v)}

≤
∑

e=uv∈E(Gk)

min{degGk
(u), degGk

(v)} = O(|V (Gk)|)

The first inequality holds as degrees of vertices grow as we triangulate faces, the
second as each face f i is of length ≥ 4 (note that f i is a cycle in Gk). The last
inequality follows as every edge e ∈ E(Gk) belongs to at most two long faces of G,
finally we apply Proposition 5.2.

Hence (5.1) is the sum of two terms of order O(n) and the proof is complete.
�

5.3 Discharging method

Our first results in this writeup have established the fact that every planar graph
contains a vertex of bounded degree (at most 5 was the best possible bound). Does
every planar graph contain an edge so that the sum of degrees of its endvertices is
bounded as well? This turns out to be false, as every edge in K2,n (which is a planar
graph) is adjacent with a vertex of large degree. However, if one limits to planar
graph without vertices of degree ≤ 2, then we have an appropriate result.

Theorem 5.5 (Kotzig) Let G be a planar graph with δ(G) ≥ 3. Then G contains
an edge e = uv so that deg(u) + deg(v) ≤ 13. Moreover if both deg(u) ≥ 4 and
deg(v) ≥ 4, then also deg(u) + deg(v) ≤ 11.

Proof. Let e = uv ∈ E(G) and let us assume that deg(u) ≤ deg(v). Let us call
e = uv light if deg(u) = 3 and deg(v) ≤ 10 or deg(u) ≥ 4 and deg(v) ≤ 11− deg(u).

Assume that the theorem is false, and let G be a minimal counterexample: G is a
planar graph without light edges, that has the smallest possible number of vertices
and biggest possible number of edges. Let us draw G in the plane.

We claim that every face of G is a triangle. Otherwise G has a face f of length
≥ 4. Now f contains two nonconsecutive vertices u, v of degree ≥ 6 (otherwise two
consecutive vertices have degree ≤ 5 which yields a light edge). Now G + uv is a
plane graph without light edges as the newly added edge is not light, and contradicts
the minimality of G. (Note that the added edge might produce a graph with parallel

49 DM, lecture notes

edges, but G+uv still has a drawing without faces of length 2, which in turn implies
|E(G+ uv)| ≤ 3|V (G+ uv)| − 6.)

Now let us apply the discharging argument . We shall assign initial charge to vertices
and faces of G. This charge will be redistributed in the graph, but the total charge
shall remain the same. In the end we shall obtain a contradiction: the structure of
the graph G (in our case the lack of light edges) shall contradict the final distribution
of charge.

Let v ∈ V (G). Its initial charge c0(v) = deg(v) − 6. If f is a face of G, then let
c0(f) = 2 deg(f)− 6 = 2 · 3− 6 = 0. Now the total initial charge equals∑

v∈V (G)

c0(v) +
∑

f∈F (G)

c0(f) (5.2)

=
∑

v∈V (G)

(deg(v)− 6) +
∑

f∈F (G)

(2 deg(f)− 6)

=
∑

v∈V (G)

deg(v)− 6|V (G)|+ 2
∑

f∈F (G)

deg(f)− 6|F (G)|

= 2|E(G)| − 6|V (G)|+ 4|E(G)| − 6|F (G)|
= −6(|V (G)| − |E(G)|+ |F (G)|) = −12.

Let us call u a vertex of small degree if deg(u) ≤ 5, and let us call vertices of degree
≥ 7 vertices of large degree. We shall redistribute charge in the discharging process
according to the following rule.

Rule: Let uv ∈ E(G) and let u be a vertex of small degree. Then v sends v charge
6−deg(u)
deg(u) .

After applying the Rule let c1(V) denote the final charge of a vertex. If f is a face
then c1(f) = c0(f) as the rule only transfer charges between vertices.

Observe first, as no edge is light, that a vertex of small degree u can only be adjacent
to vertices of large degree. Hence u receives 6−deg(u)

deg(u) from each of its neighbors, and

c1(u) = c0(u) + deg(u) · 6− deg(u)

deg(u)
= (deg(u)− 6) + (6− deg(u)) = 0.

If deg(v) = 6, then c1(v) = c0(v) = 0, as vertices of degree 6 do not play a role in
discharging.

Now let w be a vertex of large degree k. As every face of G is a triangle, no two
consecutive (around w) neighbors of w can be of small degree. Hence w can only
send charge to at most bk2c neighbors.

If deg(w) = 7, then every neighbor of w has degree ≥ 5. Therefore c1(w) ≥ c0(w)−
b72c

1
5 = 1− 3

5 ≥ 0.

If deg(w) = k ∈ {8, 9, 10} then every neighbor of w has degree ≥ 4. This implies
that c1(w) ≥ c0(w)− bk2c

1
2 = (k − 6)− bk2c

1
2 ≥ 0.

50 DM, lecture notes

Finally if deg(w) = k ≥ 11 then c1(w) ≥ c0(w)− bk2c = (k − 6)− bk2c ≥ 0

Now the total final charge is on one hand equal to −12 and is nonnegative in the
other. This contradicts the fact that G has no light edges. �

5.4 Colorings of planar graphs

A (vertex)-coloring of G is a mapping

c : V (G)→ N,

so that for every pair of adjacent vertices u, v we have c(u) 6= c(v). A coloring
should necessarily color neighboring vertices with different colors. A k-coloring is a
coloring into {1, 2, . . . , k}, and the smallest k for which there exists a k-coloring of
G is called the chromatic number of G, χ(G).

The notorious Four color theorem states that we can color vertices of an arbitrary
planar graph with no more than 4 colors. Let us state it without proof.

Theorem 5.6 (Four color theorem) Every planar graph G satisfies χ(G) ≤ 4.

Four color theorem is the optimal result, K4 is a planar graph and χ(K4) = 4. It is
however possible to give short proofs of weaker results.

It is easy to see that χ(G) ≤ 6 for every planar graph G. Namely, every planar
graph is 5-degenerate. This implies that we can construct an ordering v1, v2, . . . , vn
of vertices ofG so that vi has degree≤ 5 inG[vi, vi+1, . . . , vn], see Proposition 5.2. By
refreshing the set of vertices of degree ≤ 5 in the remaining graph we can construct
the sequence in linear time. Finally we color vertices of G greedily in the reverse
ordering vn, vn−1, . . . , v1, by coloring vi by the smallest color from {1, 2, 3, 4, 5, 6}
which is not already used on colored neighbors of vi.

Constructing a 5-coloring of a planar graph is a bit more technical. At least three
different approaches exist. Historically, using Kempe chain argument predates both
coloring by contraction and a list coloring argument of Thomassen 6.6.

Let us briefly explain the former two approaches, and let us leave Thomassen’s list
coloring idea for the next section, where it will be studied in greater detail.

Both Kempe-chain and contraction argument choose a vertex of smallest degree
v ∈ G, and first recursively construct a coloring of G − v. If deg(V) ≤ 4, then the
5-coloring c′ of G − v can be extended to a 5-coloring of v. Hence we may assume
that deg(v) = 5, and that the neighbors of v in G are v1, v2, v3, v4, v5, with indices
matching the local rotation around v.

Now if the coloring c′ does not use five different colors for v1, . . . , v5, again c′ can
be extended to v. Hence we may (without loss of generality) assume that c′(vi) = i.
Observe the component C1,3 of G induced by vertices of colors 1 and 3 which contains
v1. We can recolor vertices of C1,3 by changing colors 1 and 3 within C1,3, this

51 DM, lecture notes

procedure is called a Kempe change. If we are lucky and v3 6∈ C1,3 then the change
results in exactly four colors 2, 3, 4, 5 being used on neighbors of v. Otherwise there is
a v1−v3 path consisting entirely of vertices colored with colors 1 and 3 in G−v, this
is a Kempe chain. Now a Kempe-chain between v1 and v3 implies that vertices v2
and v4 do not lie on a path consisting of vertices of colors 2 and 4 only. Hence we can
recolor the component C2,4 containing vertex v2, and again construct a 5-coloring
of G− v using 4 colors on neighbors of v.

The contraction argument on the other hand preemptively constructs a 5-coloring
c′ of G− v which only uses ≤ 4 colors on v1, . . . , v5. Observe that it is not possible
that both v1v3 ∈ E(G) and v2v4 ∈ E(G). We can assume that v1v3 6∈ E(G). Now
G′ = G− v + v1v3/v1v3 is a planar graph in which vertices v1 and v3 are identified.
A 5-coloring c′ of G′ can be identified with a 5-coloring of G− v in which vertices v1
and v3 are assigned the same color. Again this implies that v1, . . . , v5 use at most 4
different colors, so c′ can be extended to a 5-coloring of G.

However simple the above arguments are, they cannot be turned into a linear-time
algorithm. The Kempe chain approach needs a possible recoloring of sizable portions
of G, which can only be proven to take quadratic time altogether. The contraction
argument can be turned into a linear-time algorithm by increasing the number of
different contraction types — preformed not only at vertices of degree ≤ 5, but also
at vertices of degree 6.

If we restrict ourselves to smaller classes of planar graphs, we can prove better
bounds. On one hand chromatic number drops by one if we forbid triangles.

Theorem 5.7 (Grötzsch) Let G be a planar graph without triangles. Then χ(G) ≤
3.

On the other hand we achieve the same bound by keeping triangles and forbidding
short cycles of several other lengths.

Theorem 5.8 Let G be a planar graph without cycles of lengths 4,5,6,7,8,9. Then
χ(G) ≤ 3.

Proof. Let us start with a minimal counterexample: let G be a planar graph without
cycles of lengths 4,5,6,7,8,9, let χ(G) > 3, and let G have the smallest possible
number of vertices (we are not concerned with the number of edges).

As G is a minimal counterexample we may assume that every proper induced sub-
graph of G is 3-colorable. Let us first state some easy properties of G:

1. G has no vertices of degree ≤ 2.

Assume to the contrary that G has a vertex v of degree ≤ 2. By minimality G− v
admits a 3-coloring. Now neighbors of v might use at most deg(v) ≤ 2 different
colors, hence there exists a free color for v, and a 3-coloring of G−v can be extended
to the whole G.

52 DM, lecture notes

2. G is 2-connected.

Assume that v is a cutvertex of G and let G1 be a component of G−v. By minimality
there exist 3-colorings of both G1+v and G−G1, and these 3-colorings can be merged
to a 3-coloring of G, after possibly shifting colors of G1.

Now let us start with discharging. Let v be a vertex of G, its initial charge c0(v)
is equal to deg(v) − 6. Similarly let c0(f) = 2 deg(f) − 6 for every face f ∈ F (G).
Initial charges of vertices are compiled in the following table:

deg(v) 3 4 5 6 7 8 9 . . .

c0(v) −3 −2 −1 0 1 2 3 . . .

Recycling the computation of (5.2) we have∑
v∈V (G)

c0(v) +
∑

f∈F (G)

c0(f)

=
∑

v∈V (G)

(deg(v)− 6) +
∑

f∈F (G)

(2 deg(f)− 6) = −12.

Observe that there does not exist a pair of triangles which share a common edge, as
these would give rise to a cycle of length 4.

We shall redistribute charge from positively charged faces to vertices of small degree
according to the following rules:

Rule 1a: Let v be a vertex of degree 3. If v is incident with three long faces then each
face sends charge 1 to v.

Rule 1b: Let v be a vertex of degree 3. If v is incident with one triangle then each of
the remaining two long faces sends charge 3

2 to v.

Rule 2a: Let v be a vertex of degree 4. If v is incident with four long faces then each
face sends 1

2 to v.

Rule 2b: Let v be a vertex of degree 4. If v is incident with two triangles then each of
the remaining two long faces sends charge 1 to v.

Rule 2c: Let v be a vertex of degree 4 which is incident with exactly one triangle t.
Then the two long faces which are adjacent to t send v charge 1

2 . The long
face antipodal to t sends v charge 1.

Rule 3: Let v be a vertex of degree 5 and f a long face incident with v. Then f sends
charge 1

2 to v.

Let us first describe a reducible configuration, a graph which cannot appear in a
minimal counterexample G.

Let GR be a graph on vertex set {ui, vi, zi | 0 ≤ i ≤ 4} so that zi is adjacent to
ui and vi, and vi is also adjacent to ui−1 and ui (all indices are taken modulo 5).

53 DM, lecture notes

The vertices {ui, vi | 1 ≤ i ≤ 5} induce the so called inner cycle of length 10, and
vertices zi are pasted as tips of triangles on alternate edges of the 10-cycle. The set
{z0, . . . , z4} is the set of vertices of attachment of GR.

We claim that

• G does not contain GR as a subgraph, so that vertices of the inner cycle have
degree 3 in G(we allow additional edges emanating from attachment vertices).

Assume that G contains GR as a subgraph so that the vertices of the inner ring all
have degree 3 in G. Let G′ be obtained from G by deleting vertices of the inner
cycle. As G is a minimal counterexample, there exists a 3-coloring c′ of G′. We will
show hot to extend c′ to vertices of the inner ring.

Assume first that c′ uses at most two colors on attachment vertices z0, . . . , z4, without
loss of generality these colors are 1 and 2. Let us use color 3 for every vertex
ui, 0 ≤ i ≤ 4, and finally let us color every vertex vi with color 3− c′(zi).
If, on the other hand, c′ uses all three colors on all attachment vertices, then we may
without loss of generality assume that z0 is the only attachment vertex colored with
color 3. Now let us color vertices v1, v2, v3, v4 with color 3. Next we color vertices
u1, u2, u3 with color 1 or 2 which is not present at z1, z2, z3, respectively. Finally
let us color vertices u4, v0, u0 in this order with colors 1 and 2. In this order the
neighbors of a vertex currently being colored use exactly two colors, leaving one of
the colors free.

Finally let us analyze the discharging procedure. Let c1 : V (G)∪ F (G)→ R denote
the final charge of vertices and faces of G.

Let v be a vertex. If deg(v) ≥ 6, then c1(v) = c0(v) ≥ 0. If deg(v) ≤ 4, then
c1(v) = 0, as Rules 1a, 1b, 2a, 2b, and 2c effectively discharge a vertex of degree
≤ 4 and also cover every possible arrangement of long faces around v (note that no
two triangles share a common edge).

If deg(v) = 5, then v lies on at least three faces of length ≥ 5, hence its final charge
c1(v) is at least 1

2 .

Let us now estimate the final charges of faces. If deg(f) = 3, then c1(f) = c0(f) = 0.
As G is 2-connected every face of G is a cycle, and since G has no cycles of lengths
4, . . . , 9, every face of G has length ≥ 10.

Now a face can send at most 3
2 to each vertex incident with f . If deg(f) ≥ 12, then

c1(v) ≥ c0(v)− 3
2 deg(v) = 2 deg(v)− 6− 3

2 deg(v) ≥ 0.

Let deg(f) = 11. Now c0(f) = 16 = 10 · 32 +1. Now c1(f) < 0 implies that f has sent
3
2 to every vertex along f using Rule 1b. This in turn implies that (1) all vertices
along f have degree 3, and (2) every vertex v ∈ f is incident with a triangular face.
Hence every second edge along f is incident with a triangle, which is absurd, as f
has odd length.

Let deg(f) = 10. Now c0(f) = 14 = 8 · 32 + 2 · 1 = 9 · 32 + 1
2 . We shall study all

possibilities for which c1(f) < 0. Let k1 be the number of vertices of degree ≥ 4

54 DM, lecture notes

along f . If k1 ≥ 2, then c1(f) ≥ 0, as there exist at least two vertices that receive
at most 1 from f .

Assume next that f is incident with a vertex v of degree d ≥ 4. If d ≥ 5, then f
sends at most 9 · 32 + 1

2 charge away, which implies c1(f) ≥ 0. Hence v has degree
4 and v receives charge 1 from f . Let e1 and e2 be edges incident to both v and
f . The faces adjacent to f along e1 and e2 are either both triangles or none is a
triangle, as v receives charge 1 form f using either Rule 2b or Rule 2c. As all other
vertices along f have degree 3 the parity of f implies that some vertex u along f is
not adjacent to a triangle. Now f sends charge 1 to u as well and c1(f) ≥ 0.

As the last instance let us consider the case where all vertices along f have degree
3. If f is adjacent to ≤ 4 triangles, then f sends charge 1 to at least two vertices.
As f cannot be consecutively adjacent to a pair of triangles (these would make a
4-cycle) the number of triangle neighbors of f is bounded above by 5. But this is
impossible as 5 triangles adjacent to a face of length 10 whose vertices are of degree
3 forms a reducible configuration GR. We infer that c1(f) ≥ 0 in all cases.

Thus we have arrived in contradiction as the total terminal charge is negative.
�

55 DM, lecture notes

6 List coloring of planar graphs

Ordinary vertex coloring allows for every vertex v the same palette of colors, from
where the color of v can be chosen from. In a more general setting we could have
chosen palettes of colors for each vertex individually, and requiring that each vertex
is assigned a color from its own palette — and still keeping the condition that
adjacent vertices are assigned different colors.

Formally, let G be a graph. We shall call a mapping

L : V (G)→ PN

a list assignment , and call L(v) the list of admissible colors for v.

Given L we say that G is L-list-colorable, if there exists a coloring c of G so that

c(v) ∈ L(v)

for every v ∈ V (G). In other words, as c is a coloring adjacent vertices have to get
different colors, and each vertex has to be assigned a color from its own list.

Now if G is L-list-colorable for every list assignment L satisfying |L(v)| ≥ k for every
v ∈ V (G), then we say that G is k-choosable. The choice number of G, ch(G), is
the smallest k for which G is k-choosable.

6.1 Basic properties

Consider the list assignment which is constant — every vertex v of G is assigned the
same list L(v). Clearly the critical information is the order of |L(v)|, and an L-list-
coloring can be identified with a |L(G)|-coloring. Hence the list-coloring-problem
is a generalization of the ordinary (vertex) coloring problem, and we also have the
following relation.

Proposition 6.1 For every G we have χ(G) ≤ ch(G).

But is there a difference between these two types of coloring? Consider the 6-
cycle v1, v2, v3, v4, v5, v6, with the additional edge (main diagonal) v1v4, together
with the list assignment L(v1) = L(v4) = {a, b}, L(v2) = L(v5) = {a, c}, and
L(v3) = L(v6) = {b, c}. Let us temporarily disregard the diagonal edge. Observe
that choosing color a for v1 forces a unique extension of colors to the remaining
vertices. Similarly, setting c(v1) = b forces a unique extension to the other vertices
as well, the argument follows the other direction of the cycle. In either of cases we
infer that c(v1) = c(v4) are the same (and by analogy the same relations hold for
colors of other pairs of antipodal vertices). As v1 and v4 are adjacent we infer that
our graph is not L-list-colorable and consequently not 2-choosable. On the other
hand it is bipartite.

Form this discussion it follows that ch(G) can be strictly larger than χ(G). In fact,
the difference can be arbitrarily large.

56 DM, lecture notes

Proposition 6.2 For every k there exists a graph G so that ch(G)− χ(G) ≥ k.

Proof. Take the highly nonbalanced complete bipartite graph Kk,kk . Let v1, . . . , vk
be the vertices from the smaller color class, and let L(vi) = {(i−1) ·k+1, (i−1) ·k+
2, . . . , i ·k}. There exists exactly kk different k-sets of colors where exactly one color
is chosen from each L(vi), i = 1, . . . , k, which are used as lists of admissible colors for
the vertices of the larger color class. Now every choice of colors for vertices v1, . . . , vk
appears as a list of admissible colors for one of the remaining vertices. �

Proposition 6.3 If G is k-degenerate then ch(G) ≤ k + 1.

Proof. We can color vertices greedily in the reverse order obtained by chipping ver-
tices of smallest degree from the remaining graph, starting from G. When coloring
v, it has at most k-colored neighbors, and at least one color from its own list L(v)
is free. �

We shall use Proposition 6.3 to partially prove the characterization of 2-choosable
graphs.

Let G be a graph. A 1-core of G is a minimal subgraph of G which can be obtained
by repetitively deleting vertices of degree 1, starting from G. Observe that G is
2-choosable if and only if its 1-core is 2-choosable.

A theta graph Θa,b,c is the union of three internally disjoint paths of respective
lengths a, b, and c between a pair of vertices.

Theorem 6.4 Let G be a connected graph. G is 2-choosable if and only if its 1-core
is either K1 or Θ2,2,2k for some integer k ≥ 1.

Proof. We shall only prove the reverse implication. Disregarding K1 as a trivial
case, we need to show that Θ2,2,2k is a 2-choosable graph. To fix notation, let us
assume that vertices v0, v1, . . . , v2k form the path P2k of length 2k, and let u,w
be the remaining two vertices adjacent to both v0 and v2k. Fix a 2-uniform list
assignment L.

Let us first assume that vertices of P2k are all assigned the same list of two admissible
colors. This implies that we can two color P2k in such a way, that v0 and v2k are
assigned the same color. Then we can extend the coloring to u and w, as both their
neighbors are colored the same.

Assume next that for some i the lists L(vi) and L(vi+1) are not the same. Hence
there is a color ci ∈ L(vi)\L(vi+1) and also a color ci+1 ∈ L(vi+1)\L(vi). Let us set
c(vi) = ci and let us first extend the coloring to vi−1, . . . , v1, v0 (this can be done as
at each point a vertex has a single colored neighbor), setting c(v0) = c0. The only
case where the choice of c(v0) = c0 cannot be extended to vertices u,w, and v2k is
the following: c0 ∈ L(u) ∩ L(w) and L(v2k) = (L(u) ∪ L(w)) \ {c0}. However in

57 DM, lecture notes

this case we may construct an alternative coloring c′ by first setting c′(vi+1) = ci+1,
extending it along vi+2, . . . , v2k, setting c′(u) = c′(v) = c0, and proceeding along the
remaining vertices of the P2k towards vi. �

6.2 List coloring of planar graphs

If G is a planar graph then χ(G) ≤ 4. As G is 5-degenerate we have ch(G) ≤ 6 by
Proposition 6.3. However it is not true that every planar graph is 4-choosable.

Proposition 6.5 (Voigt) There exists a planar graph G which is not 4-choosable.

Now an amazingly simple argument by Thomassen shows that lists of length 5 are
sufficient.

Theorem 6.6 (Thomassen) Every planar graph G is 5-choosable.

Proof. A near triangulation is a plane graph GC with a distinguished face fC of
length ≥ 3, all other faces being triangles. Let us denote with C the facial cycle of
fC . It is convenient to picture fC as the outer face of GC .

It is enough to prove Theorem 6.6 for near triangulations (a triangulation is also a
near triangulation) as adding edges cannot make the coloring problem easier.

Let GC be a near triangulation. We shall assume that

(1) there exists precolored consecutive vertices v1, v2 along C, whose colors are
c(v1) and c(v2),

(2) for the remaining vertices v3, v4, . . . , vr along C we have |L(vi)| = 3, and

(3) for every vertex x in the interior of C we have |L(x)| = 5.

and inductively claim that every smaller near triangulation satisfying above condi-
tions admits a list coloring which extends the precoloring of v1, v2.

The induction basis is easy. If |V (GC)| = 3, then v1, v2, v3 are the only vertices of
GC . As L(v3) = 3 there exists a color different from both c(v1) and c(v2) for v3.

The induction step comes in two flavors.

Assume first that C has a chord, a pair of two nonconsecutive vertices vi and
vj along C which are adjacent. Then let C1 = v1, v2, . . . vi, vj , vj+1, . . . , vr, and
C2 = vi, vi+1, . . . , vj−1, vj be the two cycles. Now let GC1 and GC2 be the two
near triangulations induced by Int(C1) and Int(C2), closed interiors of C1 and C2,
respectively.

Let c1 be a coloring of GC1 , its existence is guaranteed by induction. Now GC1

and GC2 share a pair of vertices vi and vj , which lie consecutively along C2 and are

58 DM, lecture notes

already assigned colors c1(vi) and c1(vj). Inductively we can extend c1 to the whole
GC2 .

IfGC has no chord, then let us focus on neighbors of vr — vertices vr−1, v
′
r, v
′
r+1, . . . , v

′
r+`, v1

in this order around vr. As GC has no diagonals none of v′r, . . . , v
′
r+` lie on C. Let

G′C′ be the near triangulation GC − vr, whose outer face f ′C′ is determined by the
facial cycle C ′ = v1, v2, . . . , vr−1, v

′
r, v
′
r+1, . . . , v

′
r+`. Let us construct an appropriate

list assignment L′ for vertices v′r, . . . , v
′
r+` to keep the induction going.

Let a, b be the colors in L(vr) different form c(v1). For every vertex v′r+i let L′(v′r+i)
be obtained by removing colors a, b from L′(v′r+1) (and possible additional colors
to keep L′(v′r+1) of length exactly 3 — this is not entirely necessary as additional
options for colors do not make a coloring problem more difficult, but it simplifies
the arguments).

Let us color GC − vr inductively. Now vertices v′r, v
′
r+1, . . . , v

′
r+` use neither a nor b.

Also c(v1) is different from a and b. Hence we only need to take a look at c(vr−1),
and at least one of a, b is an appropriate choice for c(vr). �

Let us note that by a similar argument Thomassen was able to give a simple proof
of Grötzsch theorem (Theorem 5.7). Limited to planar graphs with girth ≥ 5 the
induction asks for a precoloring of a path or a cycle of length≤ 6 lying along the outer
face of G, with lists of admissible colors of length ≥ 3, except for an independent
set of vertices from the outer face, where lists of length 2 are allowed.

6.3 5-list coloring algorithm

In this subsection we shall try to describe a linear-time 5-list-coloring algorithm.
Let us naively estimate the time complexity of Thomassen’s reductions. Finding a
possible chord in GC takes time which is proportional to the sum of vertex degrees
of vertices along C. This can be large on one hand and what is worse: it may not
lead to a reduction, as we are unable to find a diagonal. Cutting away a vertex vr
takes time which is proportional to deg(vr).

Fortunately we can remove a vertex vr even if C contains chords, as long as no chord
contains vr.

In the reduction process let us start looking for a chord incident with vr by checking
the neighbors of vr in the following order v′r+`, v

′
r+`−1, . . . , v

′
r+1, v

′
r (we are recycling

notation from the proof of Theorem 6.6). If none of v′r+`, v
′
r+`−1, . . . , v

′
r+1, v

′
r lies on

C we remove vr and proceed recursively.

On the other hand let vr−1v
′
r+j = vr−1vi be the first C-chord we find. We split GC

along vr−1vi to obtain near triangulations GC1 and GC2 , where GC1 contains both
v1 and v2 along C1. In this case vr−1 immediately precedes v1 along C1 and what is
more important no chord of C1 has an endvertex in vr−1. Hence we first recursively
find a 5-coloring of GC1 − vr−1, extend the coloring to vr−1, and finally color GC2

with vr−1 and v′r+j = vi as the pair of precolored vertices.

59 DM, lecture notes

We shall implicitly use notation from the proof of Theorem 6.6 in Algorithm 6.1. We
shall treat the list assignment L as a global variable and assume that if |L(v)| = 1
the vertex v is colored with the only admissible color form its list L(v).

5-list-color(G,C, v1, v2)
1 chord-not-found := true ;
2 P := v1 ;
3 i := deg(vr)− 3;
4 while chord-not-found & i ≥ 0 do
5 if v′r+i 6∈ C then
6 P := v′r+i + P ;
7 i−−
8 else
9 chord-not-found := false;

10 P :=v′r+i + P ;
11 C ′1 = Cv1,v′r+i

+ P ;

12 C2= Cv′r+i,vr
+ vrv

′
r+i

13 let a, b be colors from L(vr−1) different from c(v1);
14 for j := deg(vr−1)− 3 to i do
15 L(v′j) = L(v′j) \ {a, b};
16 if chord-not-found then
17 if deg(v3) = 2 & |C| = 3 then
18 choose a color from L(vr) \ {c(v1), c(v2)} for c(v3)

19 else
20 5-list-color(G,Cv1,vr−2+P , v1, v2);
21 choose a color from L(vr−1) \ {c(v1), c(vr−1)} for c(vr)

22 else
23 5-list-color(G,C ′1, v1, v2);
24 choose a color from L(vr−1) \ {c(v1), c(v′r+i)} for c(vr);
25 5-list-color(G,C2, v

′
r+1, vr−1)

Algorithm 6.1: 5-list-color computes a 5-list coloring of a planar near trian-
gulation.

Theorem 6.7 Let G be a triangulation, C a cycle in G, and v1, v2 two consecutive
vertices along G. Assume that v1 and v2 are assigned different colors from their
lists of admissible colors. Assume also that for every vertex v ∈ V (C) we have
L(v) ≥ 3, and L(u) ≥ 5 otherwise. Then 5-list-color(G,C, v1, v2) computes an
L-list-coloring of G ∩ Int(C) in linear time i.e. in time proportional to the size of
G ∩ Int(C).

Proof. The correctness of the resulting L-list-coloring follows from proof of Theo-
rem 6.6.

Let us first explain the notation uses in the pseudocode. Line 2 initializes the path
P , which will be used together with a segment of C in order to produce an outer
cycle of the recursively smaller problem. P is a path along neighbors of vr along

60 DM, lecture notes

their embedding order. Note that vr is adjacent to vr−1, v1, and also to the vertices
v′r, v

′
r+1, . . . , v

′
r+1. Hence deg(vr) is really equal to i+ 3.

As C is a cycle (with its orientation implicit by notation — in the increasing order
of indices) then Cx,y denotes the subpath of C starting at vertex x an ending in
vertex y, following the same orientation as C. This notation is for example used on
line 11 and the next one as well.

Now 5-list-color is a recursive algorithm. Let m = |E(G∩Int(C))|. We claim that
if 5-list-color(G,C, v1, v2) is the original call, then the procedure 5-list-color
has been recursively called at most m times. Let us charge each call of 5-list-color
with parameters G′, C ′, v′1, v

′
2 to the edge immediately preceding v′1v

′
2 along C ′. Now

each edge of G ∩ Int(C) is charged with at most one call of 5-list-color, and the
claim is established.

Let us estimate (up to an additive constant) the time needed to execute a single
call 5-list-color(G,C, v1, v2) if we disregard the time needed for recursive calls.
The while loop in line 4 and also the for loop on line 14 both take time which is
proportional to the number of edges incident with vr which are tested for being
chords of C, let us denote this number with m0.

If a chord was not found, then the recursion on line 20 proceeds with a near trian-
gulation which has exactly m0 + 1 triangular faces less than G ∩ Int(C). If a chord
was found, then the both graphs, upon which recursion is called on in lines 23 and
25 together have exactly m0 triangular faces less that G ∩ Int(C).

To put it all together. The procedure 5-list-color is recursively called O(n) times.
Now the time used within a single call of 5-list-color is proportional to the re-
duction of size of the problem. Hence the total running time is bounded above by
the size of G ∩ Int(C). �

61 DM, lecture notes

7 Chordal graphs

Coloring vertices of a graph is considered as one of the most important combinatorial
problems — this problems generalizes a vast collection of problems in combinatorial
optimization, and the 4-color conjecture (now 4-Color Theorem) has served as the
driving force for the whole mathematical discipline in much of the 20th century.

The divide-and-conquer approach to graph coloring would require us to split the
graph G in half (or more generally in more parts) into parts G1 and G2 sharing
only a handful of vertices S. We would like to merge respective colorings of G1 and
G2 into a unified coloring of G, but this may not always be the case. Imagine that
G1 ∩ G2 contains vertices u, v, and that coloring of G1 requires u and v to receive
different colors, yet the coloring of G2 would want to see u and v colored with the
same color. We could save the day by increasing the number of available colors, but
this is generally not the strategy we want to apply.

The class of chordal graphs (formally defined below) introduces a class of graphs, on
which merging colorings should not pose a problem. We shall see they are interesting
in their own right.

7.1 k-trees

Let us first look at a class of graphs which directly generalizes trees. We shall call
a complete subgraph of G a clique, and if a clique contains exactly k vertices it will
be called a k-clique.

We can construct trees inductively starting form K1 by attaching pedant edges to
an already constructed graph — a pendant edge is a new vertex joined to a complete
graph (of order one) in the original graph.

The class of k-trees is defined inductively:

(T1) Kk is a k-tree,

(T2) if S is a k-clique in a k-tree G, then adding a new vertex v making it adjacent
to every vertex of S produces a k-tree G′.

A tree is a 1-tree, and 2-trees can be obtained by pasting triangles along edges —
cliques of order 2.

Let us state without proof some properties of k-trees. Let G be a k-tree, then

1. G is a connected graph,

2. G contains a k-clique,

3. G does not contain a (k + 2)-clique,

4. |E(G)| = k|V (G)| − 1
2k(k + 1),

5. every minimal separator in G is a k-clique,

62 DM, lecture notes

6. if S is a minimal separator and (G1, G2) the corresponding separation, then
both G1 and G2 are k-trees.

Now the last pair of properties effectively enables a divide-and-conquer approach to
run on k-trees. Partial solutions on G1 and G2 can be recombined along a clique
separator S into a solution on the whole G.

7.2 Chordal graphs

Let us begin with a definition. A graph G is chordal if G does not contain induced
cycles of length ≥ 4. Equivalently, if every cycle C of length ≥ 4 in G contains a
chord .

Proposition 7.1 Every induced subgraph of a chordal graph is chordal itself.
The class of chordal graphs is closed under induced subgraphs.

Proof. Let G1 ≤i G2, and let C be an induced subgraph in G1. As C is also induced
in G2, C has a chord. �

The above proposition was effectively only taking into account that an induced
subgraph of an induced subgraph is itself induced. The below one is more technical.

Proposition 7.2 G is a chordal graphs if and only if every minimal separator in
G is a clique.

Proof. (⇒) Let G be a chordal graph, and let S be a minimal separator in G, so
that x, y ∈ S. We would like to see that xy ∈ E(G). Assume this is not the case.

Let (G1, G2) be a corresponding separation — a pair of graphs so that G1 ∪G2 = G
and G1∩G2 = S. Let H1 = G1−S+x+y, and symmetrically H2 = G2−S+x+y.
Let P1 be a shortest x − y-path in H1 and P2 be a shortest x − y-path in P2. As
P1 is a shortest path it is induced, and a similar observation holds for P2 as well.
Now P1∪P2 is a cycle of length ≥ 4, and no internal vertex of P1 can be adjacent to
an internal vertex of P2, as S is a separator. The edge xy is then the only possible
chord of P1 ∪ P2.

(⇐) Assume now that every minimal separator inG is a clique. Let C = v0v1v2v3 . . . vk−1v0
be a cycle of length k ≥ 4. If v0v2 ∈ E(G), then C has a chord. Hence we may
assume that v0 and v2 are not adjacent. Let S be a minimal separator separating v0
from v2. By construction S contains v1 and at least one of vertices v3, . . . , vk−1. As
S is a clique, C contains an edge between v1 and at least one of v3, . . . , vk−1, which
is a chord in C. �

We have an immediate corollary.

63 DM, lecture notes

Corollary 7.3 Every k-tree is a chordal graph.

Let us call v ∈ V (G) a simplicial vertex if its neighborhood N(v) is a clique.

Lemma 7.4 Let G be a chordal graph. Then G is either a complete graph or G
contains at least two nonadjacent simplicial vertices.

Proof. Let us perform induction on n = |V (G)|. If n = 1, 2 then the result is clear.

Let us assume that n > 2, that G is not a complete graph, and also that every
chordal graph on less than n vertices satisfies the desired condition. Let a and b
be a pair of nonadjacent vertices in G, and let S be a minimal separator separating
a and b. Take the corresponding separation (Ga, Gb) for which a ∈ V (Ga) and
b ∈ V (Gb). Inductively, Ga contains a pair of simplicial vertices which are either
nonadjacent or Ga is a complete graph. Gb shares this same property.

Hence Ga contains a simplicial vertex va 6∈ S, and similarly let vb be a simplicial
vertex in Gb which is not contained in S. Now va and vb are nonadjacent and are
also simplicial vertices in G. �

7.3 Recognizing chordal graphs

A recognition problem of a graph class G can be described as the following decision
problem:

input: graph G.

output: does G ∈ G?

The recognition problem for the class of chordal graphs can be naively solved ac-
cording to the following procedure:
Keep deleting simplicial vertices, until no longer exist. If the final graph is empty,
then the original graph G is chordal, otherwise G is not chordal.

The naive procedure is polynomial, but its time complexity may be as bad as Θ(n4)
in the general case. We should look for a more efficient algorithm.

LetG be a graph. A perfect elimination ordering or PEO is an ordering v1, v2, v3, . . . , vn
of vertices of G, so that vi is a simplicial vertex in G[vi, vi+1, . . . , vn].

Theorem 7.5 G is a chordal graph if and only if G admits a perfect elimination
ordering.

Proof. (⇒) Let G be a chordal graph, and let us inductively assume that every
chordal graph with fewer vertices has a PEO. Let v be a simplicial vertex of G, and
let G′ = G− v. Assume that the sequence

v′1, v
′
2, . . . , v

′
n−1

64 DM, lecture notes

is a PEO for G′. Then
v, v′1, v

′
2, . . . , v

′
n−1

is a PEO for G.

(⇐) Let G be a graph and
v1, v2, . . . , vn

its PEO. Assume that C is a cycle in G of length ≥ 4. Let vi ∈ V (C) with the
smallest possible index, and let vj , vk be neighbors of vi along C. As vi is simplicial
in G[vi, . . . , vn] vertices vj and vk are adjacent. Hence C has a chord. �

Let us start with a lemma characterizing perfect elimination orderings.

Lemma 7.6 Let O = v1, v2, . . . , vn be an ordering of vertices of a graph G. Then
O is not a perfect elimination ordering if and only if there exists an induced path
vi0vi1vi2 . . . vik−1

vik of length k ≥ 2, so that for every j ∈ {1, . . . , k − 1} we have
ij < i0 and ij < ik.

Proof. (⇒) Assume that O is not a PEO. Then there exists a vertex vi so that
its neighbors with higher indices do not induce a clique: there exists nonadjacent
vertices vi1 and vi2 so that vivi1 ∈ E(G), vivi2 ∈ E(G), and also i1 > i and i2 > i.
Hence vi1vivi2 is the desired path.

(⇐) Let P be an induced path so that its endvertices have bigger indices than any
of the internal vertices. Let vj ∈ V (P) be a vertex with the smallest index j along
P . Its neighbors along P have bigger indices and are not adjacent. Hence O is not
a PEO. �

Is there an efficient way to find a PEO of a chordal graph? Indeed there is. The pro-
cedure maximum cardinality search inductively selects vertices, that have maximal
number of neighbors among already selected vertices.

MaximumCardinalitySearch(G)
1 PEO = ∅;
2 label all vertices white;
3 for i = n to 1 do
4 let vi be a white vertex with maximal number of neighbors among black

vertices vi+1, . . . vn;
5 PEO = vi + PEO;
6 label vi black

7 return PEO

Algorithm 7.1: MaximumCardinalitySearch computes a PEO of a chordal
graph G.

Proposition 7.7 If G is a chordal graph, then MaximalCardinalitySearch(G)
computes a PEO of G in time O(n+m).

65 DM, lecture notes

Proof. Let us for each white vertex v with rv denote the number of neighbors of v
among black vertices. In the beginning rv = 0 for every vertex v.

We can choose the next vertex vi to enter PEO in constant time, but we have to
refresh the numbers of black neighbors for every white vertex. This takes at most
time proportional to deg(vi) time. Hence the total time complexity is equal to

O(n) +O(
∑

v∈V (G)

deg(v)) = O(n+m).

We have yet to show that the computed sequence

O = v1, v2, . . . , vn

of vertices is indeed the perfect elimination ordering.

Assume this is not the case. By Lemma 7.6 there exists an induced path P =
vi0vi1 . . . vik−1

vik of length k ≥ 2, so that for every j ∈ {1, . . . , k− 1} we have ij < i0
and ij < ik. We shall also assume that i0 < ik and also that i0 is the biggest possible
index allowing a path with this desired property.

Let N+(vi) = N(v) ∩ {vj | j > i}. Let vx be a neighbor of vi0 so that x > i0.
By maximality of i0 the path Px = vxvi0 . . . vik−1

vik has a chord, which necessarily
attaches to vx, since P is induced. Let j be maximal possible subscript j ∈ {1, . . . , k}
so that vxvij ∈ E(G). If j < k then vxvij . . . vik contradicts the choice of P and
minimality of i0. Hence vx is adjacent to vik .

This implies that Cx = vxvi0 . . . vik−1
vikvx is a cycle of length ≥ 4, so it must have a

chord. As argued above, every chord of Cx is incident with vx. Let us again choose
a maximal possible subscript j ∈ {1, . . . , k − 1} so that vxvij ∈ E(G). If j < k − 1
then the cycle vxvij . . . vik−1

vikvx is a chordless cycle of length ≥ 4, which is absurd.
Hence vx is a neighbor of vik−1

.

Hence every vertex vx ∈ N+(vi0) is also a neighbor of vik−1
. As vik is also a neighbor

of vik−1
and not a neighbor of vi0 we infer that vik−1

has strictly more neighbors in
{vi0+1, . . . , vn} than vi0 . This is a contradiction as the ordering O was produced by
maximum cardinality search. �

Running Algorithm 7.1 on an input graph G, which is not chordal, returns an order-
ing O of vertices, which is not a perfect elimination ordering. We shall describe an al-
gorithm TestChordal which decides on input G and O, whether O = v1, v2, . . . , vn

66 DM, lecture notes

is a perfect elimination ordering of G.

TestChordal(G,O)
1 for i = 1 to n do
2 let vj be a neighbor of vi with j > i and j as small as possible;
3 foreach vk a neighbor of vi with k > j do
4 if vjvk 6∈ E(G) then
5 return False

6 return True

Algorithm 7.2: TestChordal(G,O) test whether O is a PEO for G.

Theorem 7.8 TestChordal(G,O) correctly determines if O is a PEO of G.

Proof. Assume that O = v1, . . . , vn is not a PEO for G. Then there exists a vertex
v`, and a set N+

v`
= {v`1 , v`2 , . . . , v`r} which does not induce a clique and so that

` < `1 < · · · < `r. Let us choose ` as large as possible. If a pair of vertices from
{v`1 , v`2 , . . . , v`r} are not adjacent the maximality of ` implies that v`1 is not adjacent
with v`s for some s ∈ {2, . . . , r}. Now TestChordal(G,O) returns False on line 5
with vi, vj , vk equal to v`, v`1 , v`s .

Conversely, if O is a PEO then every vertex v` is simplicial in G[v`, v`+1, . . . , vn] and
hence TestChordal(G,O) returns True. �

7.4 Hard problems on chordal graphs may be easy

Consider the following two problems on the class of general graphs.

MaxClique

input: graph G.

output: maximal clique of G.

OptColoring

input: graph G.

output: χ(G) coloring of G.

It is known that both MaxClique and OptColoring are NP-hard combinatorial
problems on the class of general graphs. On the other hand PEO makes these
problems easy if G is chordal.

Theorem 7.9 Let G be a chordal graph. Then we can compute both the maximal
clique and an optimal vertex coloring in linear time.

Proof. Let v1, v2, . . . , vn be a PEO of G, and let deg+(vj) = |N+(vj)|. Let K be
a maximal clique in G, and vi ∈ V (K) a vertex of smallest index in K. Now by
maximality of K we have 1 + deg+(vi) ≤ |V (K)| and by minimality of i we have the
reverse as V (K) ⊆ {vi} ∪N+(vi).

67 DM, lecture notes

Let us greedily color vertices in the reverse of PEO vn, vn−1, . . . , v1. The number
of colors needed is equal to 1 + max{deg+(vj) | vj ∈ V (G)} which is by above
argument the size of the maximal clique in G. Hence the greedy coloring is optimal.

�

7.5 Intersection graphs and Helly property

Let A = {A1, . . . , An} be a collection of sets, which defines an intersection graph GA
in a natural way: vertices of GA are elements of A, where Ai and Aj are adjacent if
and only if their intersection is nonempty, Ai ∩Aj 6= ∅.
It is not difficult to see that every graph is an intersection graph of an appropriate
collection of sets (hint: for each vertex v consider the set containing v and the edges
incident with v).

A collection of sets A = {A1, . . . , An} satisfies the Helly property if for every
nonempty index set I ⊆ {1, . . . , n} the following implication holds:

(∀j, k ∈ I : Aj ∩Ak 6= ∅) =⇒
⋂
i∈I

Ai 6= ∅ (7.1)

In other words, if for an index subset T all pairwise intersections are nonempty, then
also the intersection over all indices in T is nonempty.

Lemma 7.10 Let T be a tree, and T = {T1, . . . , Tm} a collection of subtrees. Then
T satisfies the Helly property.

Proof. Let us start with three vertices a, b, c, and let Pab, Pbc, Pac be three subpaths
of T with endvertices a, b and b, c and a, c, respectively. As T is a tree and contains no
cycles, Pab ∩Pbc ∩Pca is nonempty, and consequently these paths contain a common
vertex x.

Let T1, . . . , Tm be a collection of subtrees so that ∀j, k ∈ {1, . . . ,m} the intersection
Tj∩Tk is nonempty. We shall prove that for every nonempty index set I ⊆ {1, . . . ,m}
the intersection ⋂

i∈I
Ti 6= ∅, (7.2)

using an inductive argument on |I|.
Obviously the cases |I| ≤ 2 are valid. Let us take an index subset I ′ = {i1, i2, . . . , ir}
of order r ≥ 3, an let us assume that (7.2) holds for every index subset I of order < r.
By assumption, Ti1 ∩Ti2 ∩ . . .∩Tir−1 , Ti2 ∩Ti3 ∩ . . .∩Tir , and Ti1 ∩Tim are nonempty,
and contain vertices a, b, and c, respectively. Hence each of Ti1 , . . . , Tir contains
at least two of a, b, c, and hence at least one of Pab, Pbc, Pac. As Pab ∩ Pbc ∩ Pca is
nonempty we also have ⋂

i∈I′
Ti 6= ∅.

68 DM, lecture notes

This completes the proof. �

69 DM, lecture notes

8 Tree decomposition

Let P be a hard problem on the class of graphs: imagine that we want to decide
whether G has a vertex-cover of small order, or we want to construct a hamilton cy-
cle, or maybe a 3-vertex coloring. These three problems are difficult, more precisely
— using the language of computational complexity theory — NP-hard.

On the other hand if our input graph is a tree, these problems turn out to be easily
solvable. Of course a tree T has no hamilton cycle, and of course T is 3-vertex
colorable, but even the minimal vertex cover can be constructed without much fuss
(how exactly?).

It should come to no surprise if (most common) problems, which are hard on the
class of general graphs, tend to become easy if the input graph is not too far from
a tree.

It is the concept of similarity to trees that we shall study in the sequel.

8.1 Definition

Let G be a graph. A tree decomposition of G is a pair (T,B), where T is a tree, and
B = {Bt | t ∈ V (T)} is a collection of vertex sets of G, called bags, indexed by
nodes of T satisfying

(T1)
⋃
t∈V (T)Bt = V (G)

(T2) for every edge uv ∈ E(G) there exists a bag Bt so that u, v ∈ Bt, and

(T3) for all t, t′, t′′ ∈ V (T) for which t′ lies between t and t′′ we have Bt∩Bt′′ ⊆ Bt′ .

Let us first comment on the properties of tree width. (T1) requires that every
vertex of G belongs to a bag, it may belong to several bags, though. (T2) represents
containment of edges in bags — formally bags contain vertices, but if a pair of
vertices are adjacent, then they both have to appear in at least one of the bags
together. They do not need to appear together in every bag. The last property (T3)
is best explained from a vertex’ point of view: a vertex v may belong to several
bags. But if v belongs to a pair of bags Bt and Bt′′ then v belongs to every bag Bt′

which is indexed by a node t′ which lies between t and t′′ in T .

Let us denote by Tv the subgraph of T induced by the nodes of T that contain v in
their bags. Then (T3) is equivalent to (T3’)

(T3’) for every vertex v ∈ V (G) the subgraph Tv is a tree (= is connected).

A single graph may admit several tree decompositions. One of the options is to take
a trivial tree T of order 1, and place every vertex of a graph in a single bag. This
clearly satisfies the axioms (T1—T3), but may not be an option we are looking for.
We would namely like to have bags as small as possible:

70 DM, lecture notes

The width of a tree decomposition (T,B) is equal to maxt{|Bt|} − 1, and the tree-
width of G, tw(G), is the smallest width of a tree decomposition of G.

The structure of G forces that some of the bags are large.

Proposition 8.1 Let K be a clique in G, and let (T,B) be a tree decomposition of
G. Then there exists a bag Bt so that V (K) ⊆ Bt.

Proof. Let {v1, v2, . . . , vk} be the vertices of K, and let Tv1 , . . . , Tvk be trees induced
by nodes of T containing v1, . . . , vk in their bags, respectively. For i, j ∈ {1, . . . , k}
we have vi ∼ vj , and hence Tvi ∩Tvj 6= ∅. By Helly property (Lemma 7.10) the trees
Tv1 , . . . , Tvk share a common node t. Hence Bt contains all vertices of a clique K.

�

Proposition 8.2 Tree width is minor monotone, if H≤mG then tw(H) ≤ tw(G).

Proof. Let (T,B) be an optimal tree decomposition of G, i.e. its width is equal to
tw(G). We shall construct tree decompositions of width at most tw(G) for G − v,
G− e, and G/e, respectively. The result shall follow as every minor of G is obtained
by a series of vertex and edge deletions, and edge contractions starting from G.

Removing v from every bag of B results in a tree decomposition of G− v, and a tree
decomposition of G is also a tree decomposition of G− e. Assume that e = uv and
let xuv be the new vertex obtained by contracting e = uv in G/e. Replacing vertices
u, v by a single vertex xuv in every bag of B results in a tree decomposition of G/e,
whose width may even drop by one. This completes the proof. �

Proposition 8.3 Let G be a graph, and let (G1, G2) be a separation of G so that
G1 ∩G2 is a clique. Then

tw(G) = max{tw(G1), tw(G2)}.

Proof. Let (Ti,Bi), i = 1, 2, be optimal tree decompositions of G1 and G2, and let
K = G1 ∩ G2. As K is a clique both a bag Bt1 ∈ B1 and a bag Bt2 ∈ B2 contain
all vertices of K. Joining T1 and T2 in a single tree by adding an edge t1t2 creates
a tree decomposition (T,B1 ∪ B2) of G of the appropriate width. �

An immediate consequence of Proposition 8.3 is the following.

Proposition 8.4 Let G be a graph and G1, . . . , Gk its blocks. Then

tw(G) = max
i∈{1,...,k}

{tw(Gi)}.

71 DM, lecture notes

8.2 Examples

If G is a singleton graph then its sole vertex can be put in a singleton bag of a tree
with a single node. This is a tree decomposition of width 0, and we clearly cannot
do better.

Let G be a tree. Let T be a total subdivision of G, obtained by inserting one
additional vertex of degree 2 on every edge of G. Now V (T) splits into V1 ∪ V2,
where nodes of V1 represent vertices of G, and nodes in V2 correspond to edges of
G. Let the bags be built correspondingly: for t ∈ V1 let Bt be the singleton {v} so
that t corresponds to v. If t′ ∈ V2 then Bt′ = {u′, v′} so that t′ corresponds to the
edge u′v′. We have thus constructed a tree decomposition of width 1.

Let us note at this point that somehow artificial definition of width of a decomposi-
tion (subtracting 1 from the size of bags) is in place with the sole reason that trees
have tree-width equal to 1. By 8.4 we infer:

(6) tw(G) = 0 if and only if G is edgeless, tw(G) ≤ 1 if and only if G is a forest.

Let G be a clique on n vertices. Choosing a single-node tree and putting the whole
vertex-set V (G) in its bag is a decomposition of width n− 1. On the other side by
Proposition 8.1 every tree decomposition of G has width ≥ n− 1.

If G contains a pair of nonadjacent vertices x and y, then we can construct a tree
decomposition with bags V (G − x), V (G − y), which has width n − 2. To sum it
together:

(7) Let G be a graph on n vertices. Then tw(G) = n − 1 if and only if G is
complete.

Next, take a cycle Cn. Contracting a single edge in Cn results in a cycle of length
n − 1. Repeatedly contracting edges will get us to C3 = K3. As tree-width might
have decreased in the process we have tw(Cn) ≥ tw(K3) = 2.

In order to construct a decomposition of Cn of width 2 let us first pick a pair of
vertices at maximal distance on Cn and label these with v1, vn. The rest of Cn can
be seen as a pair of internally disjoint v1−vn paths, and let us label internal vertices
along these with even v2, v4, . . . , v2bn−1

2
c and odd v3, v5, . . . , v2bn−1

2
c+1 indices. The

tree decomposition of width 2 of Cn contains bags {{v1, v2, v3}, {v2, v3, v4}, . . . , {vn−2, vn−1, vn}}
strung along a path.

(8) If Cn is a cycle then tw(Cn) = 2

Finally let us construct a tree decomposition of width n of a planar quadrangular
n × n grid Pn�Pn. Vertices of Pn�Pn are pairs of integers (x, y), where x, y ∈
{1, . . . , n} and pairs of integers (x1, y1) and (x2, y2) are adjacent if and only if |x1−
x2|+ |y1 − y2| = 1.

72 DM, lecture notes

For every vertical edge {(x0, y0), (x0, y0+1} let us construct a bag Bx0,y0 = {(x, y0) |
x ≤ x0}∪{(x, y0+1) | x ≥ x0}, and let us make bags Bx,y and Bx′,y′ adjacent in the
tree (to be precise their corresponding nodes) if the pair (y′, x′) is the successor of
(y, x) in the lexicographic ordering (note the transposition of coordinates). Hence:

(9) tw(Pn�Pn) ≤ n

8.3 Properties of tree decomposition

Let us first argue that a tree decomposition (T,B) encompasses separation properties
of the graph G. Let t1t2 be an edge of T . Deleting t1t2 splits T into a pair of trees
T1, T2 (we adjust notation so that ti ∈ V (Ti)), and let Gi, i = 1, 2, be the subgraph
of G induced by the bags of Ti.

Proposition 8.5 With notation as above, if (T,B) is a tree decomposition of G and
t1t2 ∈ E(T) then Bt1 ∩Bt2 separates V (G1) from V (G2).

Proof. We need to show that every V (G1) − V (G2)-path P in G contains a vertex
of S = Bt1Bt∈ . Assume to the contrary that there exists a V (G1)− V (G2) path P
avoiding S. This implies that a pair of consecutive vertices u1, u2 along P belong
to V (G1) \ S and V (G2) \ S, respectively. As u1u2 is an edge in G there exists a
node t ∈ V (T) so that both u1, u2 ∈ Bt. By symmetry we may assume t ∈ T1. As
u2 ∈ V (G2) \ S there is a node t′ ∈ V (T2) so that u2 ∈ Bt′ .
Now by (T3′) the vertex u2 belongs to every bag Bt∗ where t∗ lies between t and t′.
As both t1 and t2 lie between t and t′ we have a contradiction as u2 6∈ Bt1 ∩Bt2 = S.

�

We say that a tree decomposition (T,B) of G is linked if for every pair of bags Bt
and Bt′ and every integer k there exist k disjoint Bt − Bt′ paths or a bag Bt′′ of
order < k, where t′′ is a node of T lying between t and t′.

Linked tree-decompositions model connectivity properties in an exact manner, and
linked tree-decompositions exist, as the next proposition states.

Proposition 8.6 If G admits a tree decomposition of width w then G also admits
a linked tree decomposition of the same width.

Let us first argue that we can assume that the bags of a decomposition are incom-
parable.

Proposition 8.7 Let (T,B) be a tree decomposition of width w of graph G. Then
there exists a tree decomposition (T ′,B′) of G having incomparable bags.

73 DM, lecture notes

Proof. Assume the tree decomposition contains a pair of bags Bt, Bt∗ , so that
Bt∗ ⊆ Bt. Let P be a t∗ − t-path in T , let t∗t0 be the first edge along P , and let
t1, t2, . . . , tk be the remaining (apart from t0) neighbors of t∗ in T .

Let us construct an alternative tree decomposition of G. Let T ′ be the tree obtained
by deleting the edge t∗t0, and adding edges tit, for i ∈ {1, . . . , k}. Let B′ = B\{Bt∗},
the nodes of T ′ (viewed as nodes of T as well) retain their respective bags. As
Bt∗ ⊆ Bt both (T1) and (T2) clearly hold.

Assume, contrary to (T3’), that there exist nodes τ1, τ2 6= t∗ and a vertex v, so that
T ′ does not contain a τ1 − τ2-path, yet there is a τ1 − τ2-path Pτ in T . Pτ contains
the edge t∗t0, and consequently also vertices t0 and tj for some j ∈ {1, . . . , k}.
Now the subpaths of Pτ−t∗ can be joined in T using t, as both t0 and tj are adjacent
to t. This is a contradiction terminating the proof. �

The order of T in a tree decomposition can be arbitrarily large compared to the
order of G, for example if many nodes of T share the same bag. On the other hand
if bags are incomparable the order of G effectively bounds the number of nodes in
T .

Proposition 8.8 Assume that the bags of a decomposition (T,B) are pairwise in-
comparable. Then |V (T)| ≤ |V (G)|.

Proof. We can prove the inequality by induction on the number of vertices of G.
The basis where G has a single vertex holds.

Let t be a leaf of T , and t′ its unique neighbor. Let U = Bt \ Bt′ . The assumption
tells us that U 6= ∅, and for every vertex u ∈ U the bag Bt is the sole bag containing
u, by (T3). Now (T − t,B \ {Bt}) is a tree decomposition of G − U whose bags
are pairwise incomparable. Inductively |V (G − U)| ≥ |V (T − t)| and consequently
|V (G)| ≥ V (T). �

We can, if we want, impose additional properties on the tree decomposition.

Proposition 8.9 Let (T,B) be a tree decomposition of width w of graph G. Then
there exists a tree decomposition (T ′,B′) of the same width having the following
properties:

(N1) for every edge t1t2 in E(T) we have either Bt1 ⊆ Bt2 or Bt2 ⊆ Bt1,

(N2) neighboring bags differ by at most one element,

(N3) T is subcubic.

Proof. We shall only do a sketch.For every pair of neighboring nodes t1, t2 with
incomparable bags let us subdivide edge t1t2 with a new note t12 and set BT12 =

74 DM, lecture notes

Bt1 ∩ Bt2 . Next if for some edge t3t4 the difference Bt4 \ Bt3 = U with |U | ≥ 2, we
can subdivide the edge t3t4 with additional |U | − 1 vertices, and let the orders of
bags raise by one on the t3 − t4-path.

Finally if t is a node with neighbors t0, t1, . . . , tk+1 where k ≥ 2 we can replace t
with a path of k vertices all carrying the same bag Bt. �

8.4 Nice tree decomposition

A rooted tree decomposition (T,B) with root r is nice if apart from (N1), (N2), and
(N3) it also satisfies the the following two properties:

(N4) If t has two sons t1, t2 then Bt1 = Bt2 = Bt.

(N5) Every leaf t satisfies |Bt| = 1.

Proposition 8.10 Let G be a graph and (T,B) a tree decomposition of width w
and order O(n). Then we can in O(wn) time construct a nice tree decomposition
(Tn,Bn) of G having the same width w.

Proof.[sketch] We have to take into account that |V (T)|, |E(T)|, and the number
of leaves of T are all O(n). Subdividing every edge (if needed to achieve (N1))
takes time O(n), and increases the number of nodes and edge by a constant factor.
Splitting all high degree vertices takes time proportional to O(n), and yields a tree
which still has O(n) edges, let us also split r so that its degree is at most 2. Now
for every edge the orders of bags differ by at most w + 1, hence in O(wn) time we
can satisfy (N2).

Finally let us hang the resulting tree by its root r, and observe that every vertex has
at most two sons. If t has two sons and a bag Bt′ differs from Bt, let us subdivide
the edge tt′ with an additional vertex t′′, and let us set Bt′′ = Bt. This takes time
proportional to the number of edges in T , hence the total time spent is O(wn).
�

Let us associate names to nodes of a nice tree decomposition (Tn,Bn). If t is a leaf,
then t is also called the start node. A node with two sons (who share bags with
their parent) is called a join node. If a node t has exactly one son then it is either
a forget node or an introduce node, depending whether its bag has one vertex
less or one vertex more, respectively, than its son’s.

8.5 Computing a tree decomposition

A natural question arises. Why one needs a tree decomposition and how could one
compute one. We shall answer the first question in the next subsection, and try to
give a satisfying answer for the second one right here right now.

75 DM, lecture notes

Unfortunately, computing tree-width (or computing an optimal tree decomposition)
is a difficult problem.

Theorem 8.11 (Arnborg, Corneil, Proskurowski) Deciding whether tw(G) ≤
k is NP-complete.

On the other hand let us decide that k is not part of the input, but rather a constant.
Then, in theory, thighs brighten up.

Theorem 8.12 (Bodlaender) Fix k. There exists an algorithm that either con-
structs a tree decomposition of G of width ≤ k or correctly decides that tw(G) > k
in time O(n).

However, the linear algorithm of Bodlaender is not a practical one. The constants
hidden in O(n) notation a huge and depend heavily on k. We shall see in the
following section how one can efficiently compute a tree decomposition of G of small
width, provided that tw(G) is small.

8.6 Dynamic programming on a tree decomposition

Let G be a graph. A 3-(vertex)-coloring is a mapping

c : V (G)→ {1, 2, 3},

so that for every edge uv we have c(u) 6= c(v). We know that not every graph admits
a 3-coloring, and in some cases it is easy to show so. Yet in the general case deciding
whether G admits a 3-coloring, equivalently whether its chromatic number χ(G) is
at most 3, is a difficult problem. More precisely, the problem

3-coloring

input: Graph G.
output: Is χ(G) ≤ 3?

is NP-complete. Constructing a 3-coloring, if one exists, an optimization version
of the abovementioned decision problem, is a NP-hard problem. It may come as
a surprise that, given a tree decomposition (T,B) of G of width w we will be able
to either construct a 3-coloring or show that χ(G) ≥ 4 in O(f(w)n) time. If we
only consider graphs of bounded tree-width we can compute an existing 3-coloring
in linear time.

Assume that we are given a nice tree decomposition (T,B) of G whose width is w.
Now each bag contains at most w+ 1 vertices. If t ∈ V (T) then let Gt be the graph
induced by bags of descendants of t (including t itself). We shall name Gt the lower
graph or t-lower graph if we really want to be precise. Note that Bt separates the
lower graph from V (G−Gt).
Let t ∈ V (T) and S ⊆ Bt. A characteristic is a pair (γ, δ) where

γ : Bt → {1, 2, 3}

76 DM, lecture notes

and

δS =

{
1, if mapping γ extends to a 3-coloring of Gt,
0, otherwise.

A list of characteristics (at a node t) is a collection of characteristics for every
possible mapping of Bt into {1, 2, 3}. We can think of a characteristic as a fingerprint
of a restricted (its intersection with the bag is prescribed) 3-coloring of the lower
graph or a piece of information that a mapping of Bt cannot be extended to a
3-coloring.

We shall in a bottom-up approach construct lists of characteristics at every node t.
Whether χ(G) ≤ 3 or not can be easily retrieved from list of characteristic at the
root, as Gr = G.

What we shall need is a collection of four algorithms for each of the node types
explaining how to compute lists of characteristics at node t, provided we know the
characteristics of its sons.

start: Let us first observe a start node t, and let v be the sole vertex of Bt. As Gt is an edgeless
graph, every characteristic describing a possible choice of color for v (as a mapping of Bt into
{1, 2, 3}) has its second coordinate equal to 1.

join: Assume that t1 and t2 are sons of t, and Bt = Bt1 = Bt2 . Let (γ, δ1) and (γ, δ2) be
characteristics at t1 and t2, respectively. As Bt separates Gt1 and Gt2 the coloring of Bt extends
to Gt if and only if it extends to both Gt1 and Gt2 . Hence the corresponding characteristic at t
is equal to (γ, δ1 · δ2).

forget: Let t′ be a son of t and let v ∈ Bt′ \ Bt. Choose a mapping γ : Bt → {1, 2, 3}, which
extends three ways to a mapping γ′i : Bt′ → {1, 2, 3}, i = 1, 2, 3, by setting γ′i(v) = i. Let
(γ′1, δ

′
1), (γ

′
2, δ
′
2), (γ

′
3, δ
′
3) be the three characteristics at t′. Now we compute a characteristic at t

by (γ,max{δ′1, δ′2, δ′3}.

introduce: Assume now that v ∈ Bt \ Bt′ , where t′ is the only son of t. A characteristic
(γ′, δ′) be a characteristic at t′, and let γ1, γ2, γ3 be extensions of γ′ to Bt, where γi(v) = i, for
i ∈ {1, 2, 3}. For every i ∈ {1, 2, 3} let us set a characteristic (γi, δi) where δi = 1 if and only if
both δ′ = 1 and v has no neighbor in Bt of the same color.

How much time do the above algorithms require? The list of characteristics in a node
t has length ≤ 3w+1, and computing the list of characteristics of t, given character-
istics of its sons, takes O(q(w)3w) time where q(w) is a low degree polynomial. As
a nice tree decomposition of a n-vertex graph G has O(wn) nodes we can compute
lists of characteristics of every node of T in time O(p(w)3wn) for some polynomial
p. Consequently we can in this time decide whether G admits a 3-coloring or not.

If yes, constructing an actual 3-coloring requires some additional bookkeeping. Let
us for every characteristic (γ, δ) at a nonstart node t for which δ = 1 remember its
predecessor characteristics (γ′, δ′) for every son t′ of t – the one which enables us to
extend the 3-coloring of Bt′ to Bt. Hence by tracnig predecessors we can in a top
down manner transform a yes answer of a decision problem to an actual solution of
the optimization problem.

77 DM, lecture notes

We can compile the above analysis into a pair of meta-theorems describing dynamic
programming on a tree decomposition.

Dynamic programming on a tree decomposition can be roughly described with the
following recipe:

(1) Construct suitable characteristics for a problem.

(2) Prove that the number of characteristics is bounded if the width of the decom-
position is bounded.

(3) Construct four algorithms (of constant time complexity — the constant relies
on the width, though) for each type (start, introduce, forget, join) of
node t:

input: Bt, the set of introduced/forgotten vertices, families of characteristics
of sons

output: characteristics of node t

(4) Prove correctness and completeness.

Theorem 8.13 Let P be a decision problem for which (1)–(4) hold. Then there
exists a linear time algorithm for P .

In order to be able to solve the optimization version of P one additional ingredient
is needed:

(5) four polynomial algorithms for each type (Start, Introduce, Forget,
Join) of node t:

input Bt, the set of introduced/forgotten vertices, families of characteristics
of sons, for every characteristic Ct and for every son t′ a pair (Ct′ , St′)
which induces Ct

output: partial solution St with characteristic Ct, which for each son t′ re-
stricts to St′ on (lower graph) Gt′

Theorem 8.14 Let P be an optimization problem for which (1)–(5) hold. Then
there exists a polynomial algorithm for P .

If the decision variant of P can be solved in time O(n) and algorithms for (5) run
in constant time then solving P takes O(n).

78 DM, lecture notes

9 Tree decomposition lower bounds

Let G be a graph. If its tree-width is small, then dynamic programming on a tree
decomposition enables us to solve hard problems efficiently. We can in linear-time
compute its minimal-vertex cover, a possible 3-coloring or a hamilton cycle, or a
maximal independent set. These problems are generally NP-hard. There are two
caveats. On one hand, there is no easy way to compute a tree-decomposition of
optimal width.

The other possible problem is that a graph might have large-tree width in the first
place. The width of a tree-decomposition is an upper bound to tree-width, and is a
decomposition of small width is therefore a certificate of small tree-width of a graph.
The quest for the structure implying that tree-with is large is our next task.

9.1 Brambles

Let G be a graph. A family of vertex-subsets M = {M1,M2, . . . ,Mk} is a bramble
if:

(M1) Mi ⊆ V (G) for every i ∈ {1, . . . , k},

(M2) Mi induces a connected graph, G[Mi] is connected, for every i ∈ {1, . . . , k},

(M3) for every pair i, j ∈ {1, . . . , k} the sets Mi and Mj touch, which means that
they either intersect, Mi∩Mj 6= ∅, or alternatively there exists vertices vi ∈Mi

and vj ∈Mj , so that vi and vj are adjacent.

We shall call Mi a block of a bramble M.

A subset U ⊆ V (G) is a cover (sometimes also called a hitting set) of a bramble
M = {M1,M2, . . . ,Mk}, if U intersects every bag of M, U ∩ Mi 6= ∅ for every
i ∈ {1, . . . , k}.
The order of a bramble is the minimal size of its cover.

The tree-width duality theorem connects the concept of a tree-decomposition with
that of a bramble.

Theorem 9.1 (tree-width duality) Let k ≥ 0. Then tw(G) ≥ k if and only if G
admits a bramble of order > k.

Equivalently formulated,

for every G and integer k exactly one of below holds

• tw(G) < k

• G admits a bramble of order > k.

79 DM, lecture notes

We shall technically omit the proof of the above theorem, yet will in the next section
describe a close connection with a combinatorial game of cops and robbers in a graph.

Fixing a graph, we are looking for a bramble with maximal possible order. Clearly
the order of a bramble is bounded from above with the number of bags (and also
the number of vertices of a graph), so as an approximation a bramble with as many
bags as possible in a legitimate intermediate goal.

Let us take a look at a planar quadrangular n× n grid Pn�Pn. A cross is a union
of a row and a column. There are exactly n2 different crosses, and they do form
a bramble: (M1) is clear, as a cross induces a graph which is a union of two paths
sharing a common vertex we also have (M2). Now given a pair of crosses C and C ′,
a row of the former intersects the column of the other, hence also (M3).

If U contains at most n − 1 vertices, then U misses a both a row and a column.
Their union is a cross disjoint from U . Hence the size of a minimal cover is at least
n. On the other hand the set of n-vertices from, say, the first column intersect every
cross, and hence forms a cover. By Theorem 9.1 we infer tw(Pn�Pn) ≥ n− 1.

We have to play it a bit more careful to get the exact bound.

Proposition 9.2 tw(Pn�Pn) = n.

Proof. In the previous section we have constructed a tree-decomposition of Pn�Pn of
width n (with bags being “broken rows” with exactly n+1 vertices). By Theorem 9.1
it is enough to construct a bramble of order n+ 1.

Let us label vertices of V (Pn�Pn) = {(i, j) | 1 ≤ i, j ≤ n}. A short cross Ck,`,
k, ` ∈ {1, . . . , n − 1} is the set {(k, i) | 1 ≤ i ≤ n − 1} ∪ {(j, `) | 1 ≤ j ≤ n − 1}.
Intuitively a short cross lacks a vertex from the bottom row and the right column.
Let R = {(i, n) | 1 ≤ i ≤ n − 1} and B = {(n, j) | 1 ≤ j ≤ n}; R denotes the
rightmost column (without the bottom vertex), and B is the bottom row.

Let us construct a bramble M = {Ck,` | 1 ≤ k, ` ≤ n − 1} ∪ {R,B}. The above
discussion indicates that M satisfies (M2), and also (M1). In order to show (M3),
the short crosses clearly intersect, we need to observe that every short cross has a
vertex in both the penultimate row and the second-to-right column.

Now a cover U ofM needs at least n− 1 vertices to cover all the short crosses, and
an additional pair of vertices to cover the disjoint sets R and B. Hence the order of
M is at least n+ 1 (exactly n+ 1, indeed). �

9.2 Cops and robbers

A lack of the proof of Theorem9.1 still leaves us with a bitter aftertaste. So let us
play a different game. We shall exhibit a connection with a combinatorial cops-and-
robbers game (game? again) that will serve our purpose.

Searching an sweeping in graphs are a pair of related concepts, where either a set

80 DM, lecture notes

of agents would like to find an intruder hiding in a graph, or alternatively would
like to purge a graph of a disease that spreads along edges. The dynamic of the
agents, intruder, and the spread of disease may vary in different problems, but the
underlying graph structure serves as the basic movement frame.

Let us describe the rules of the cops-and-robbers game that will encompass both
tree-decompositions and brambles. Cops-and-robbers is a 2-player game, the first
player P1 controls the squad of k cops, the second player P2 controls the movement
of a single robber.

(game start) At the start of the game player P1 distributes cops in vertices of
G. Several cops may occupy the same vertex in G, and also a cop may be
temporarily removed from the game. However, the objective to catch the
robber will push player P1 to distribute k cops on k different vertices in G.
Next, player P2 chooses robber’s position in one of the cop-free vertices.

(cop’s move) A single move of P1 consists of flying a single cop c from one vertex
to another. The movement of a cop in not constrained to the underlying graph.
However we can think of cops flying around in helicopters — these machines
cannot land very fast, and a robber observing an approaching cop can escape
before touch down.

(robber’s move) A robber moves around on a speedy motorcycle traveling at great
speed, yet a robber is bound to stay at vertices of G. If C is the subset of
V (G) containing the cops, and the robber stays at v 6∈ C, then the robber may
choose to move to any vertex of the component G− C containing v.

(objective) Cops would like to catch the robber, but given that the robber is in v
they can only do so (as a robber can escape a landing cop) by first occupying
every neighbor of v, and in the last move landing on the top of robber’s head.
The robber would like to escape the cops indefinitely long.

Proposition 9.3 Let G be a graph. If tw(G) < k then k cops have a winning
strategy of catching a robber.

Proof. Let (T,B) be a tree decomposition of G of width < k, the bags of B have
size ≤ k. Let us assume that B satisfies the property that (i) Bt 6= Bt′ for every pair
of nodes t, t′ ∈ V (T), and (ii) for every edge tt′ ∈ E(T) we have either Bt ⊆ Bt′ or
Bt′ ⊆ Bt.
A decomposition satisfying these properties may be constructed by first taking a
decomposition with incomparable bags, and second subdividing every edge of T and
assigning the intersection bag at each new node.

Let us put the whole lot of cops in a single bag Bt of maximal order. Now Bt is a
separator in G, and there exists a component R of G−Bt, so that the robber is in
R. Let T ′ be the subtree of T so that R ⊆

⋃
τ∈V (T ′)Bτ , and let t′ be a neighbor of

t in T ′. We might say that the robber hides in T ′.

81 DM, lecture notes

Let us “move” the cops from Bt to Bt′ : now if Bt′ ⊆ Bt then no additional helicopter
flights are needed, the cops are already in Bt′ . If, on the other hand, Bt ⊆ Bt′ , then
at least |Bt′ \Bt| cops are free to fly to B′t so that at all times all vertices of Bt are
filled with cops.

Now this move results in the robber hiding in a smaller tree. In a finite number of
steps the robber will have no place to hide, and this will lead to its capture. �

Proposition 9.4 Let G be a graph. If G admits a bramble of order > k, then a
robber has a winning strategy agains k cops.

Proof. LetM = {M1,M2, . . . ,M`} be a bramble of order > k. This implies that no
set of ≤ k vertices cover M. Let C be the set of vertices occupied with cops. The
robber r follows the strategy of staying in a bag of M which is not covered with C.

Assume the robber resides in Mj and let player P1 choose to land a cop c in a
vertex of Mj . As the number of cops is strictly smaller than the order of M some
other block Mj′ will not be covered with a cop after c lands. So the robber can
immediately prior to c’s landing escape to Mj′ — this is possible as Mj and Mj′

touch (M3) and as Mj induces a connected graph (M2). �

Now clearly a simultaneous winning strategy for both the cops and the robber is
out of the question. This implies that no graph admits both a tree decomposition
of width < k and a bramble of order > k. The other direction will be left unsettled
(how does a winning strategy for, say, cops imply a tree decomposition of width
< k).

82 DM, lecture notes

10 Matchings

A matching in a graph G is a set of edges M ⊆ E(G), so that no two edges e, e′ ∈M
share an endvertex. The trivial examples of matchings include both the empty
matching ∅, and if e is an arbitrary edge of G, the singleton matching {e}. We shall
be interested in the other end of the spectrum. We would like our matching to have
as many edges as possible.

Given a matching M , we call a vertex v M -matched (or just matched if the matching
is obvious from the context) if v is an endvertex of an edge from M , otherwise v
is called M -free (or just free). A matching M is inclusion-wise maximal if no pair
of adjacent vertices are both M -free, equivalently if G − V (M) is edgeless, where
V (M) denotes the set of endvertices of edges from M .

Greedy approach is a possible strategy to construct a large matching: pick an arbi-
trary edge e1 = u1v1, put it in the bag of a greedily growing matching, and iterate
the process on G−u1− v1. We finish with a matching M , and the remainder of the
original graph is a collection of isolated vertices, an edgeless graph.

An inclusion-wise maximal matching can be constructed using the above mentioned
greedy approach.

Constructing the matching greedily might not finish in a matching with the maximal
possible number of edges — a matching M is maximal (in G) if no matching M ′

satisfies |M ′| > |M |. Clearly a maximal matching is inclusion-wise maximal, yet the
converse might not hold. Take a path P of length 3. Its edge set E(P) decomposes
in a pair of inclusion-wise maximal matchings, the one containing the middle edge
and the other containing the two end edges. The latter matching is also a maximal
one, and the former consequently is not.

Later on we shall find a criterion proving a matching is maximal. At this point let
us opt for an easier optimality property — a matching M is perfect if every vertex
of G is M -matched. Clearly a perfect matching M satisfies |M | = |V (G)|/2 and as
already mentioned a perfect matching is a maximal one.

Yet a perfect matching may be sour grapes — not every graph may admit a perfect
matching. The easiest examples include cycles of odd length and paths of even
length.

10.1 Matching and vertex-covers

A vertex-cover is a set of vertices U ⊆ V (G) so that every edge has an endvertex
(or both) in U . The vertex-set V (G) itself is a vertex-cover, and omitting a single
vertex v we still are left with a vertex-cover V (G − v). We are however interested
in vertex-covers of small order.

There is an easy relation comparing orders of a matching and that of a vertex-cover.

Proposition 10.1 Let G = (V,E) be a graph and choose an arbitrary vertex-cover

83 DM, lecture notes

U ⊆ V (G) and an arbitrary matching M ⊆ E(G). Then

|M | ≤ |U | (10.1)

Proof. Choose an edge uv ∈M . A vertex-cover U must contain at least one of u, v.
Consequently |U | ≥ |M |, as at least one of the endvertices of every edge from M
(recall, they do not share endvertices) has to be included in U . �

The following is an easy consequence of the above proposition. We can, by optimizing
both sides of (10.1), infer:

Corollary 10.2 Let G = (V,E) be a graph. If U∗ ⊆ V (G) is a minimal vertex-cover
and M∗ ⊆ E(G) is a maximal matching then

|M∗| ≤ |U∗|

Let G be a graph, and assume that by some chance we find a pair, a matching M and
a vertex-cover U having the same order |M | = |U |. Then we immediately know that
both are optimal, M is a maximal matching and also U is a minimal vertex-cover.

The converse might not hold. In an odd cycle C2k+1 the maximal matching has size
k, and the minimal vertex-cover has order k + 1.

We know that searching for a minimal vertex-cover on the class of all graphs is a
NP-hard problem. We shall learn in the sequel that the quest for maximal matchings
is a much easier one.

10.2 Augmenting paths

Let G be a graph and let M be a matching. Let P = v0v1v2 . . . vk−1vk be a path in
G, and let us denote the edges of P with e1, e2, . . . , ek, so that ei = vi−1vi. We say
that P is an alternating path if every other edge along P is in M , in other words
either M ∩ E(P) = {e1, e3, e5, . . .} or M ∩ E(P) = {e2, e4, e6, . . .}.
An alternating path P is an M -augmenting path (or just augmenting path if there is
no doubt on the matching in question) if its endvertices v0 and vk are both M -free.
Clearly every augmenting path is of odd length.

Given an M -augmenting path P we can augment the matching M along P , by
exchanging the edges along P with respect to the matching by setting

M ′ = M + E(P)

where + denotes the symmetric difference of sets. In other words we remove the
edges of P previously in M , and insert those edges of P that were previously not
contained in M . As |M ′| = |M |+1 we have augmented the matching in the process.

The existence of an M -augmenting path proves that M is not a maximal matching.
The implication in the other direction is valid as well.

84 DM, lecture notes

Theorem 10.3 Let G be a graph and M a matching. Then G is a maximal match-
ing if and only if there exists no M -augmenting paths in G.

Proof. (⇒) is clear.
For (⇐) it is enough to see the following. IfM andM ′ are matchings and |M | < |M ′|,
then there exists an M -augmenting path in G. Let us imagine that edges in M are
given green color, and edges in M ′ receive red color. Let us observe G′ = G[M ∪M ′]
the spanning subgraph of G spanned by colored edges. Now every vertex of G′ has
degree at most 2 and connected components of G′ are either (i) isolated vertices, (ii)
cycles, and (iii) paths.

An edge e of G′ may receive both colors, red and green, let us call such an edge
a 2-cycle (we may think of both red and green instance of e as a pair of parallel
edges). Next a (longer) cycle C in G′ is necessarily of even length, as edges of each
color alternate along C.

Let P be a path component of G′ and let v be an endvertex of P . By maximality
of P (a component is a maximal connected subgraph) if v is incident with an edge
from M then it is also M ′-free, and vice versa.

Globally, as |M ′| > |M |, there exists a component K of G, so that |E(K) ∩M ′| >
|E(K) ∩M |. Now K is neither a 2-cycle, neither a (proper) cycle of greater length,
nor a path of even length. All these types of possible subgraphs are balanced with
respect to the number of green and red edges. Hence K is a path of odd length, and
both its endvertices u and v are incident with edges from M ′. Hence both u and v
are M -free.

This makes K an M -augmenting path in G. �

Now Theorem 10.3 provides us with the template approach for computing a maximal
matching.

MaximalMatching(G)
1 M = ∅;
2 while G contains an M -augmenting path P do
3 M = M + E(P)
4 return M

Algorithm 10.1: MaximalMatching algorithm template.

The only problem is to find an augmenting path.

We shall finish the section with a technical lemma. Its proof is straightforward but
we will use the exact wording in the last subsection.

Lemma 10.4 Let G be a graph, and let M1 and M2 be matchings of the same
size. Then G contains an M1-augmenting path if and only if G contains an M2-
augmenting path.

Proof. As M1 and M2 are of the same size they are either both maximal or none of

85 DM, lecture notes

them is maximal. In the former case no path can be augmenting, and in the latter
case both M1- and M2-augmenting paths exist. This follows from Theorem 10.3.

�

10.3 Matchings in bipartite graphs

We shall devote this section to the problem of finding maximal matchings in bipartite
graphs. Why limiting ourselves on bipartite graphs, one might ask.

Often enough we study problems on objects of different types, for example relations
between teachers and students, trains and train stations, points and lines, to name
a few. In these cases the graphs representing relations between objects of different
types by definition turn out to be bipartite.

König’s theorem ties matchings and vertex-covers in bipartite graphs. If comput-
ing minimal vertex-covers is NP-hard, restricted to bipartite graphs it becomes a
polynomially solvable problem.

Theorem 10.5 Let G = (V,E) be a bipartite graph. If U∗ ⊆ V (G) is a minimal
vertex-cover and M∗ ⊆ E(G) is a maximal matching then

|M∗| = |U∗|

We shall postpone the proof of the above theorem.

Let G be a bipartite graph. We shall construct a related weighted graph G+, so
that solving the max-flow-min-cut problem on G+ will enable us to extract both a
maximal matching an a minimal vertex-cover.

Let A∪B = V (G) be the bipartition of vertices of G. The auxiliary weighted graph
G+ is constructed following these steps:

• add a pair of new vertices s and t, V (G+) = V (G) ∪ {s, t},

• for every vertex a ∈ A add an edge sa, orient it away from s, and set its weight
w(sa) = 1,

• for every vertex b ∈ B add an edge bt, orient it towards t, and set its weight
w(bt) = 1,

• orient every original edge from A towards B, and set its weight to 2.

Proposition 10.6 Let f be an s− t-flow in G+.

(a) If f is integral then the set of A−B edges Mf = {e | f(e) = 1} is a matching
in G.

86 DM, lecture notes

(b) If f is also maximal, then Mf is a maximal matching. The set of vertices {v ∈
A ∪ B | v is incident with an edge e so that f(e) = w(e) = 1} is a minimal
vertex-cut.

Proof. Kirchhoff’s conditions imply that f(e) ≤ 1 for every edge e. Hence f can be
interpreted as a collection of |f | edge-disjoint s− t-paths Pf . No two paths from Pf
can share a vertex in either A or B, as the inflow into an arbitrary vertex a ∈ A is
bounded from above by 1, and so is the outflow from every b ∈ B. Hence the paths
from Pf are internally disjoint. This implies that the A−B edges from paths in Pf
form a matching.

Let f be a maximal flow, and E(U,U ′) a minimal cut. By above arguments E(U,U ′)
contains noA−B edges. By Ford-Fulkerson theorem (Theorem 2.6) |f | = w(E(U,U ′)).
On one hand the A−B edges from paths of Pf form a matching of size |f |.
On the other hand let e ∈ E(U,U ′). As e is not a A − B edge e has exactly on
endvertex ve ∈ A ∪ B. We claim that S = {ve | e ∈ E(U,U ′)} is a vertex-cover
of order w(E(U,U ′)) in G. If ab ∈ E(G) has no endvertex in S, then f(sa) = 0,
f(bt) = 0, and consequently also f(ab) = 0, contradicting the optimality of f . This
completes the proof. �

We have thus reduced the problem of finding optimal matchings and vertex-covers
to computing maximal flows and minimal cuts. And, duality between cuts and flows
also implies Theorem 10.5.

Let us finish the section with the classical Hall’s theorem. Let G be a bipartite graph,
and let A ∪ B = V (G) be the bipartition of its vertices. In several applications we
only need to find a matching M in which every vertex a ∈ A is M -matched, and not
worry about vertices from B.

An obvious obstruction to such a matching is a subset S ⊆ A having too few
neighbors in B; |N(S)| < |S|. It is however surprising that this is the only possible
obstruction.

Theorem 10.7 (Hall) Let G be a bipartite graph and let A ∪ B = V (G) be the
bipartition of its vertices. Then G contains a matching M so that every a ∈ A is
M -matched if and only if

∀S ⊆ A : |S| ≤ |N(S)| (10.2)

Proof. (⇒) is clear.
Now (⇐) is an immediate consequence of Theorem 10.5. Let U be an optimal vertex
cover of G. We only need to consider the case |U | < |A|. In this case let S = A \U .
Clearly S 6= ∅ and let us assume that |S| ≤ |N(S)|. As U is a vertex cover N(S) ⊆ U .
Hence |U | ≥ |A ∩ U |+ |N(S)| ≥ |A ∩ U |+ |S| = |A ∩ U |+ |A \ U | = |A|. This is a
contradiction finishing the proof. �

87 DM, lecture notes

Corollary 10.8 Let G be a regular bipartite graph. Then G contains a perfect
matching.

Proof. Let V (G) = A ∪ B, and let d be the degree of a (and hence of every)
vertex of G. By double counting of edges we infer that d|A| = d|B| implying that
G is balanced, |A| = |B|. If M is a matching so that every vertex of A will be
M -matched, then also every vertex b ∈ B is M -matched, as |A| = |B|.
By Theorem 10.7 it is enough to establish the Hall condition (10.2). Pick a subset
S ⊆ A, and assume that |N(S)| < |S|. Let F be the set of edges incident with
vertices of N(S). Clearly |F | = d|N(S)|, and as every edge emanating from S has
an endvertex in N(S) also |F | ≥ d|S|. Now this implies |N(S)| ≥ |S| establishing
Hall’s condition and finishing the proof. �

A k-factor in G is a spanning k-regular subgraph. A 1-factor is therefore exactly
a perfect matching. A 1-factorization of G is a partition of E(G) into perfect
matchings. Clearly every graph admitting a 1-factorization must be a regular one.

By repeatedly applying Corollary 10.8 in a d-regular bipartite graph G we infer:

Corollary 10.9 Let G be a d-regular bipartite graph. Then G admits a 1-factorization
with d blocks, i.e. the edges of G can be partitioned into d perfect matchings.

10.4 Matchings in general graphs

We shall devote the last section to describe an algorithm for computing maximal
matchings in general graphs. According to Algorithm template 10.1 we shall only
need to find an M -augmenting path, or give a certificate that no M -augmenting
paths exist.

Let G be a graph and M a matching. A M -blossom (or just a blossom) is an odd
cycle C satisfying the following properties:

(B1) there exists exactly one vertex v ∈ V (C) so that v is not incident with an edge
in E(C) ∩M , implying that if C has length 2k + 1 then |E(C) ∩M | = k, and

(B2) v is an endvertex of an alternating path P of even length whose other endvertex
v′ is M -free.

We shall call P and v the stem and the base of a blossom C, respectively. Observe
that if v is M -free then the stem of C has length 0.

Let C be anM -blossom inG. Contracting a blossom C results in a graphG′ obtained
by contracting vertices of C into a single vertex vC . Now in G′ the new vertex vC is
adjacent to every vertex of G−V (C) which has a neighbor in C. The corresponding
matching equals M ′ = M \ E(C).

The following theorem is a cornerstone observation.

88 DM, lecture notes

Theorem 10.10 Let C be an M -blossom in G, and let G′ be a graph and M ′ a
matching obtained by contracting C, respectively. Then G contains an M -augmenting
path if and only if G′ contains an M ′-augmenting path.

Proof. Let C be an M -blossom with base v, and let us first assume that v is M -
free. Let G′ be the graph obtained by contracting the blossom C, with M ′ the
corresponding matching. If P is an M -augmenting path disjoint from C then P is
also an M ′-augmenting path in G. Otherwise P intersects C, yet P has an endvertex
u 6∈ V (C), as C contains exactly one M -free vertex. Let Pu be the initial segment
of P starting at u and just touching C. As vC is an M ′-free vertex Pu is an M ′-
augmenting path in G′.

If v is not M -free and Pv is a nontrivial stem of C then let M1 = M +E(Pv). Now
C is both an M -blossom and also an M1-blossom. Similarly, contracting C produces
a pair of matchings M ′ and M ′1 in these respective cases. Assume that G admits
an M -augmenting path. By Lemma 10.4 G admits an M ′-augmenting path, and by
above argument also G′ admits an M ′1-augmenting path. As M ′1 and M ′ are of the
same size there exists an M ′-augmenting path as well.

For the converse implication let us first choose an M ′-augmenting path P ′ in G′.
If vC 6∈ V (P ′) then P ′ is also an M -augmenting path in G. Now if P ′ contains
vC , then let us split P ′ into internally disjoint subpaths P ′1 and P ′2 sharing vC as
their common endvertex. Let P1 and P2 be their lifts in G — paths in G spanned
by E(P ′1) and E(P ′2) — and let v1 and v2 be their endvertices on C, respectively.
There is exactly one v1 − v2-path P ∗ along C of even length (generally v1 and v2
split C into a pair of paths of lengths of different parities, but if v1 = v2 then we
can take as P ∗ the trivial v1 − v2-path). Now the concatenation of P1, P

∗, and P2

is an M -augmenting path in G. �

In the sequel we shall exhibit a recursive algorithm FindAugmentingPath (Algo-
rithm 10.2) for computing an augmenting path in G with respect to a matching M .
We may be lucky an find an M -augmenting path by applying a search procedure
in G. Yet a search may fail to find an M -augmenting path even if one exists. In
this case we will settle for a blossom C, whose contraction produces G′ and the
corresponding matching M ′, and will try to find an M ′-augmenting path in G′ re-
cursively. By Theorem 10.10 an M ′-augmenting path P ′ in G′ can be lifted to an
M -augmenting path P in G. We shall call P the lift of P ′.

Let us comment on the data structures needed in the run of Algorithm 10.2. We
shall iteratively grow a forest F , so that each tree of F is rooted in an M -free vertex.
In the run a vertex or an edge x may become flagged, by setting Flag(x):=True. For
every discovered vertex v we shall also note the subtree of F containing v by setting
the corresponding entry in the Root table. Further we shall note the parity of the

89 DM, lecture notes

v − Root(v)-path in F .

FindAugmentingPath(G,M)
1 foreach x ∈ V (G) ∪ E(G) do
2 Flag(x) :=False
3 F = forest all of M -free vertices of G;
4 foreach v ∈ V (F) do
5 Parity(v) :=Even;
6 Root(v) := v

7 foreach v ∈ V (F) satisfying Flag(v) =False and Parity(v) =Even do
8 foreach edge vw ∈ E(G) \M satisfying Flag(vw) =False do
9 case Flag(w) =False

10 Parity(w) :=Odd ;
11 Flag(w) :=True;
12 let z be the only vertex so that wz ∈M ;
13 Parity(z) :=Even;
14 F := F + w + z + vw + wz

15 case Flag(w) = True and Parity(w)=Odd
16 ignore this case;

17 case Flag(w) = True and Parity(w)=Even and Root(w) 6= Root(v)
18 return (Root(v)-v-w-Root(w) path)

19 case Flag(w) = True and Parity(w)=Even and Root(w) = Root(v)
20 C := cycle in F + vw;
21 (G′,M ′)=ContractBlossom(C);
22 P ′ :=FindAugmentingPath (G′,M ′);
23 return lift(P ′)

24 Flag(vu):=True;

25 Flag(v):=True;

26 return (∅)

Algorithm 10.2: FindAugmentingPath finds a possible augmenting path with
respect to G and M .

Theorem 10.11 Let G be a graph, and M a matching. Then the call
FindAugmentingPath(G,M) in Algorithm 10.2 finds an M -augmenting path in G
or correctly reports that no M -augmenting path exists.

Moreover, the running time of FindAugmentingPath(G,M) is O(n3), where n de-
notes the number of vertices in G.

Proof. Let us first prove the former statement. We proceed by induction on the
number of edges in G. The basis E(G) = ∅ trivially holds.

Let G be a graph, M its matching, and let us inductively assume that
FindAugmentingPath produces results as stated for every input graph (and its
matching) on fewer vertices. Assume first that M is a maximal matching, i.e.
there exists no M -augmenting paths in G. There are two possibilities for a call

90 DM, lecture notes

FindAugmentingPath(G,M) to return a path. Either the algorithm outputs ∅ (an
indication that there exists no M -augmenting path) on Line 26 or outputs a lift(P ′)
on Line 23, where P ′ is a path returned by the call FindAugmentingPath(G′,M ′).
As the contracted graph G′ contains no M ′-augmenting path by Theorem 10.10, the
inductive hypothesis implies P ′ = ∅. Hence also lift(P ′) = ∅.
Assume next that there exists an M -augmenting path P = v0v1v2 . . . vk in G. In or-
der to achieve a contradiction let us assume that the call FindAugmentingPath(G,M)
returns ∅. Inductively we may assume that the primary routine
FindAugmentingPath(G,M) does not recursively call FindAugmentingPath(G′,M ′),
and finishes by returning ∅ on line 26. This implies that every vertex v having even
parity is ultimately flagged.

Let us inductively prove that for every vertex vi of P its parity equals the parity of i.
This clearly is true for i = 0. Now consider an edge vivi+1 of P . If vivi+1 6∈M then vi
and vi+1 have different parities, as inductively vi is of even parity and as otherwise
FindAugmentingPath(G,M) returns an augmenting path or finds a blossom. If
vivi+1 ∈M then we may by induction assume that vi is of odd parity. Now if parity
of vi was set before vi+1 then vi+1 is the only neighbor of vi along an edge in M
and immediately after Line 12 the parity of vi+1 is set to even. On the other hand
if parity of vi+1 is odd then at the moment the parity of vi+1 was set the vertex
vi had not been determined its parity. That would make vi of even parity which
contradicts the inductive assumption.

Hence vi and i are of the same parity along all P . This is clearly a contradiction as
k is odd, and as vk is M -free, its parity is even.

For the time complexity it is easy to see that a single call of
FindAugmentingPath(G,M), excluding recursion, takes O(m) = O(n2) time, where
m denotes the number of edges in G. As G′ contains fewer edges, the total time
complexity of FindAugmentingPath(G,M) including the recursive calls is bounded
above by O(

∑n
i=1 i

2) = O(n3). �

Now let us finish with a couple of comments. Using the template Algorithm 10.1 we
infer that we can compute maximal matchings in general graphs in time O(n4).

If the input graph G is bipartite then the case on line 19 never occurs. This implies
that FindAugmentingPath can be used also for computing maximal matchings in
bipartite graph. A single call of FindAugmentingPath takes O(m) which implies
that we can compute maximal matchings in bipartite graphs in time O(nm).

Finally let us argue that looking for blossoms in indeed necessary. If M is not a
maximal matching in G, then G contains an M -augmenting path, but we may not
find it with the search approach employed in Algorithm 10.2. The catch lies in case
on line 15. An edge vw is in this case ignored, but may itself be an edge of an
M -augmenting path P , as P may use a number of not yet discovered vertices.

91 DM, lecture notes

	Uvod
	Introduction
	Graph Searching
	Paths, flows, and connectivity
	Constructing 2-connected graphs
	Planar graphs
	Discharging technique
	List coloring of planar graphs
	Chordal graphs
	Tree decomposition
	Tree decomposition lower bounds
	Matchings

